水景间歇复氧条件下护岸型湿地的水质净化效率
Water purification effect of revetment wetland under condition of intermittent reoxygenation by waterscape
-
摘要: 为改善缓流景观水体水质,通过搭建小试实验装置,研究了曝气处理、喷泉处理和跌水处理对护岸型湿地中污染物去除率的影响。结果表明,在水力停留时间(HRT)为4 d时,护岸型湿地对缓流景观水体中的总磷(TP)、总氮(TN)和化学需氧量(COD)平均去除率分别达到了48.63%、43.41%和68.51%;3组处理系统均通过间歇复氧促进了护岸型湿地对氮磷的去除,与空白处理相比,曝气处理、喷泉处理及跌水处理使得TP的去除率分别提高了13.59%、11.12%和14.42%,TN的去除率分别提高了10.32%、13.13%和8.88%,COD的去除率提高了24.82%、24.60%和23.09%;同时发现,4个处理系统对氮磷的去除率随温度的下降而降低。Abstract: In order to improve the water quality of urban landscape water bodies, four lab-scale revetment wetland systems were built and the effect of artificial aeration, fountain, and falling water processing systems on pollutant removal efficiencies were investigated.The average removal efficiencies of total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD) were 48.63%, 43.41% and 68.51%, respectively, when the hydraulic retention time (HRT) was 4 days.All three processing systems promoted nitrogen and phosphorus removal efficiencies in the revetment wetland through intermittent reoxygenation.Compared with the blank system, the artificial aeration, fountain, and falling water processing systems improved the TP removal efficiency by 13.59%, 11.12%, and 14.42%, respectively, improved the TN removal efficiency by 10.32%, 13.13%, 8.88%, respectively, and improved the COD removal efficiency by 24.82%, 24.60%, 23.09%, respectively.Moreover, with a decrease in temperature, the removal efficiencies of nitrogen and phosphorus declined.
-
Key words:
- waterscape /
- revetment wetland /
- intermittent aeration /
- dissolved oxygen
-
-
[1] 张琼华,吉倩倩,王晓昌,等.城市景观水体水质净化的人工湿地设计[J].环境工程学报,2009,3(11):1965-1968 [2] Neralla S,Weaver R W,Lesikar B J,et al.Improvement of domestic wastewater quality by subsurface flow constructed wetlands[J]. Bioresource Technology, 2000, 75(75):19-25 [3] 王紫琦,张娜,孙威,等.北京永定河河岸带生态修复对河流水质的影响[J].中国科学院大学学报, 2015, 32(4):498-505 [4] 魏俊,王银龙,陶如钧,等.杭州师范大学一期工程景观水体设计[J].环境工程,2015(S1):236-238 [5] 田伟君,翟金波,王超.城市缓流水体的生物强化净化技术[J].环境污染治理技术与设备, 2003, 4(9):58-62 [6] Verhoeven J T A, Meuleman A F M. Wetlands for wastewater treatment:Opportunities and limitations[J].Ecological Engineering,1999,12(1-2):5-12 [7] 王云中,杨成建.生态喷泉运用于景观水体水质稳定的可行性分析[J]. 生态经济,2009(11):13-16 [8] 陈飞星,刘晓燕,张心海,等.北京动物园水禽湖溶解氧动态与喷泉增氧效果分析[J].环境工程,2001,19(6):26-27 [9] 雒文生,李莉红,贺涛.水体大气增氧理论和增氧系数研究进展与展望[J].水利学报,2003(11):64-70 [10] 王左良.跌水曝气(充氧)效果的影响因素试验研究[D].重庆:重庆大学,2006 [11] Brix H.Do macrophytes play a role in constructed treatment wetlands[J]. Water Science & Technology, 1997, 35(5):11-17 [12] 马剑敏,张永静,马顷,等.曝气对两种人工湿地污水净化效果的影响[J]. 环境工程学报,2011,5(2):315-321 [13] Green M,Friedler E,Safrai I.Enhancing nitrification in vertical flow constructed wetland utilizing a passive air pump[J].Water Research,1998, 32(12):3513-3520 [14] 汤显强,李金中.间歇曝气对人工垂直潜流湿地氮磷去除性能的影响[J].水处理信息报导, 2008, 29(4):58-58 [15] 陈玉霞.曝气复氧条件下黑臭河道底泥内源氮的迁移转化行为研究[D].上海:华东师范大学,2011 [16] 荣伟英,周启星.大沽排污河底泥释放总氮的影响[J].环境科学学报, 2012, 32(2):326-331 -

计量
- 文章访问数: 1757
- HTML全文浏览数: 1472
- PDF下载数: 400
- 施引文献: 0