水合氧化铁改性竹炭去除水中磺胺甲噁唑

陈国鑫, 王珅, 熊永娇, 宁寻安, 黄翔峰, 刘佳. 水合氧化铁改性竹炭去除水中磺胺甲噁唑[J]. 环境工程学报, 2016, 10(2): 559-565. doi: 10.12030/j.cjee.20160208
引用本文: 陈国鑫, 王珅, 熊永娇, 宁寻安, 黄翔峰, 刘佳. 水合氧化铁改性竹炭去除水中磺胺甲噁唑[J]. 环境工程学报, 2016, 10(2): 559-565. doi: 10.12030/j.cjee.20160208
Chen Guoxin, Wang Shen, Xiong Yongjiao, Ning Xunan, Huang Xiangfeng, Liu Jia. Sulfamethoxazole removal from aqueous solution by hydrous ferric oxide modified bamboo charcoal[J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 559-565. doi: 10.12030/j.cjee.20160208
Citation: Chen Guoxin, Wang Shen, Xiong Yongjiao, Ning Xunan, Huang Xiangfeng, Liu Jia. Sulfamethoxazole removal from aqueous solution by hydrous ferric oxide modified bamboo charcoal[J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 559-565. doi: 10.12030/j.cjee.20160208

水合氧化铁改性竹炭去除水中磺胺甲噁唑

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2012ZX07101006-02)

  • 中图分类号: X703

Sulfamethoxazole removal from aqueous solution by hydrous ferric oxide modified bamboo charcoal

  • Fund Project:
  • 摘要: 研究了水合氧化铁(HFO)改性竹炭对水中磺胺甲噁唑的去除效果,考察了磺胺甲噁唑初始浓度与初始pH对去除效果的影响,并对去除过程中磺胺甲噁唑及其产物的发光细菌的急性毒性进行了评价。实验结果表明,采用X射线光电子能谱(XPS)及红外光谱(FTIR)对改性竹炭进行表征确定水合氧化铁负载改性的方法是可行的,改性竹炭能显著提高竹炭对水中磺胺甲噁唑的去除效果,在磺胺甲噁唑20、40和80 mg/L 3个初始浓度条件下,在HFO改性竹炭反应体系中,其反应速率常数为原竹炭的19.0~32.2倍;改性竹炭对水中磺胺甲噁唑的去除过程符合准一级动力学,反应速率常数随初始浓度的升高而减小,反应速率常数随pH的变化规律为pH 8>pH 4>pH 1,表明水中磺胺甲噁唑以阴离子形态存在时更易于去除;改性竹炭去除磺胺甲噁唑的过程中有反应产物生成,发光细菌毒性测定结果表明,反应体系的发光抑制率从反应起始时的96.1%下降到了84.2%(144 h),说明采用HFO改性竹炭去除磺胺甲噁唑有利于减弱反应体系的毒性。
  • 加载中
  • [1] Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils:A review. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167
    [2] Liu Jinlin, Wong minghung. Pharmaceuticals and personal care products (PPCPs): A review on environmental conta-mination in China. Environment International, 2013, 59: 208-224
    [3] 王丹, 隋倩, 赵文涛, 等. 中国地表水环境中药物和个人护理品的研究进展. 科学通报, 2014, 59(9): 743-751 Wang Dan, Sui Qian, Zhao Wentao, et al. Pharmaceutical and personal care products in the surface water of China: A review. Chinese Science Bulletin, 2014, 59(9): 743-751(in Chinese)
    [4] Li Wenhui, Shi Yali, Gao Lihong, et al. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere, 2012, 89(11): 1307-1315
    [5] Liu Hong, Zhang Guoping, Liu Congqiang, et al. The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang City, China. Journal of Environmental Monitoring, 2009, 11(6): 1199-1205
    [6] Luo Yunlong, Guo Wenshan, Ngo H. H., et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 2014, 473-474: 619-641
    [7] 张树清, 张夫道, 刘秀梅, 等. 规模化养殖畜禽粪主要有害成分测定分析研究. 植物营养与肥料学报, 2005, 11(6): 822-829 Zhang Shuqing, Zhang Fudao, Liu Xiumei, et al. Deter mination and analysis on main harmful composition in excrement of excrement of scale livestock and poultry feedlots. Plant Nutrition and Fertilizing Science, 2005, 11(6): 822-829(in Chinese)
    [8] Yang Lihua, Ying Guangguo, Su Haochang, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environmental Toxicology and Chemistry, 2008, 27(5): 1201-1208
    [9] Maskaoui K., Hibberd A., Zhou J. L. Assessment of the interaction between aquatic colloids and pharmaceuticals facilitated by cross-flow ultrafiltration. Environmental Science & Technology, 2007, 41(23): 8038-8043
    [10] Lin Cheyi, Huang Shangda. Application of liquid-liquid-liquid microextraction and high-performance liquid-chromatography for the determination of sulfonamides in water. Analytica Chimica Acta, 2008, 612(1): 37-43
    [11] Tian Yuan, Gao Bin, Morales V. L., et al. Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns. Chemosphere, 2013, 90(10): 2597-2605
    [12] Yao Ying, Gao Bin, Chen Hao, et al. Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials, 2012, 209-210: 408-413
    [13] Qi Chengdu, Liu Xitao, Lin Chunye, et al. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity. Chemical Engineering Journal, 2014, 249: 6-14
    [14] Sagi G., Csay T., Patzay G., et al. Oxidative and reductive degradation of sulfamethoxazole in aqueous solutions: Decomposition efficiency and toxicity assessment. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301(2): 475-482
    [15] Hijosa-valsero M., Fink G., SchlüSener M. P., et al. Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere, 2011, 83(5): 713-719
    [16] Dan A., Yang Yang, Dai Yunv, et al. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands. Bioresource Technology, 2013, 146: 363-370
    [17] Gu Cheng, Karthikeyan K. G. Interaction of tetracycline with alu minum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(8): 2660-2667
    [18] Gu Cheng, Karthikeyan K. G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(23): 9166-9173
    [19] 周敏, 王树伦, 陈俊辉, 等. 恩诺沙星在含水氧化铝和含水氧化铁上的配位吸附及配位增溶效应. 环境科学学报, 2012, 32(2): 425-431 Zhou min, Wang Shuloin, Chen Junhui, et al. Surface complexation sorption and ligand-promoted dissolution of enrofloxacin on aluminum hydroxiade and iron hydroxide. Acta Scientiae Circumstantiae, 2012, 32(2): 425-431(in Chinese)
    [20] Feitosa-felizzola J., Hanna K., Chiron S. Adsorption and transformation of selected human-used macrolide antibacterial agents with iron (III) and manganese (IV) oxides. Environmental Pollution, 2009, 157(4): 1317-1322
    [21] 许建红, 高乃云, 唐玉霖, 等. 浅析水合氧化铁的研究进展. 水处理技术, 2011, 37(8): 22-34 Xu Jianhong, Gao Naiyun, Tang Yulin, et al. Analysis of hydrous ferric oxide research. Technology of Water Treatment, 2011, 37(8): 22-34 (in Chinse)
    [22] 邵千钧, 徐群芳, 范志伟, 等. 竹炭导电率及高导电率竹炭制备工艺研究. 林产化学与工业, 2002, 22(2): 54-56 Shao Qianjun, Xu Qunfang, Fan Zhiwei, et al. Study on electroconductivity of bamboo charcoal and technology of preparing high electro-conductivive bamboo charcoal. Chemistry and Industry of Forest Products, 2002, 22(2): 54-56 (in Chinse)
    [23] Fan Ye, Wang Bin, Yuan Songhu, et al. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource Technology, 2010, 101(19): 7661-7164
    [24] 罗舒君, 周培国, 张齐生, 等. 竹炭曝气生物滤池去除水中有机物的研究. 水处理技术, 2009, 35(3): 86-89, 98 Luo Shujun, Zhou Peiguo, Zhang Qisheng, et al. Organic removal of wastewater by bamboo biological aerated filter. Technology of Water Treatment, 2009, 35(3): 86-89, 98 (in Chinse)
    [25] 涂汉, 刘强, 龙婉婉, 等. 水平潜流和垂直流人工湿地对生活污水净化效果的比较研究. 井冈山大学学报(自然科学版), 2013, 34(5): 31-35 Tu Han, Liu Qiang, Long Wanwan, et al. A Comparative study on domestic sewage purification for horizontal subsurface flow and vertical flow constructed wetlands. Journal of Jingganshan University (Natural Sciences Edition), 2013, 34(5): 31-35 (in Chinse)
    [26] Jiang Min, Chen Weifang, Cannon F. S. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal. Environmental Science & Technology, 2008, 42(9): 3369-3374
    [27] 谭增强, 邱建荣, 向军, 等. 氧化改性竹炭脱除单质汞的特性与机理分析. 中国环境科学, 2011, 31(10): 1625-1631 Tan Zengqiang, Qiu Jianrong, Xiang Jun, et al. Removal of elemental mercury using bamboo charcoal modified by oxidants. China Environmental Science, 2011, 31(10): 1625-1631 (in Chinse)
    [28] Zhang Di, Pan Bo, Zhang Huang, et al. Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environmental Science & Technology, 2010, 44(10): 3806-3811
    [29] 廖鹏. 多孔竹炭对废水中氮杂环化合物的吸附机理研究. 武汉: 华中科技大学硕士学位论文, 2013 Liao Peng. Adorption mechanism of nitrogen-heterocyclic compounds in wastewater on porous bamnoo charcoal. Wuhan: Master Dissertation of Huazhong University of Science and Technology, 2013(in Chinese)
    [30] 廖立兵, Fraser D. G. 羟基铁溶液-蒙脱石体系对砷的吸附. 中国科学D辑: 地球科学, 2005, 35(8): 750-757 Liao Libing, Fraser D. G. Adsorption of As on hydroxy-Fe-montmorillonite complexes . Sciece in China Series D: Eaeth Sciences, 2005, 48(12): 2155-2165(in Chinese)
    [31] 俞悦. 光化学及生物法降解磺胺甲噁唑(SMX)的研究. 上海: 上海师范大学硕士学位论文, 2013 Yu Yue. Research of photochemical and biological degradation of sulfamethoxazole. Shanghai: Master Dissertation of Shanghai Normal University, 2013(in Chinese)
    [32] Lucida H., Parkin J. E., Sunderland V. B. Kinetic study of the reaction of sulfamethoxazole and glucose under acidic conditions: I. Effect of pH and temperature. International Journal of Pharmaceutics, 2000, 202(1-2): 47-62
    [33] Qiang Zhimin, Adams C. Potentiometric deter mination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Research, 2004, 38(12): 2874-2890
    [34] 万俊力, 邓慧萍. 改性炭对磺胺甲噁唑的吸附及解吸特性. 土木建筑与环境工程, 2012, 34(增刊): 103-107 Wan Junli, Deng Huiping. Adsorption of sulfamethoxazole on modified activated carbon and its release behavior. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(S1): 103-107 (in Chinse)
    [35] Zhang Huichun, Huang Chinghua. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related a mines with goethite. Chemosphere, 2007, 66(8): 1502-1512
    [36] Gómez-Ramos M. D. M., Mezcua M., Agüera A., et al. Chemical and toxicological evolution of the antibiotic sulfamethoxazole under ozone treatment in water solution. Journal of Hazardous Materials, 2011, 192(1): 18-25
    [37] Zhang Yu, Cai Xiyun, Lang Xian ming, et al. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture. Environmental Pollution, 2012, 166: 48-56
    [38] Yu Xin, Zuo Jiane, Li Ruixia, et al. A combined evaluation of the characteristics and acute toxicity of antibiotic wastewater. Ecotoxicology and Environmental Safety, 2014, 106: 40-45
  • 加载中
计量
  • 文章访问数:  2069
  • HTML全文浏览数:  1715
  • PDF下载数:  379
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-12-22
  • 刊出日期:  2016-03-10
陈国鑫, 王珅, 熊永娇, 宁寻安, 黄翔峰, 刘佳. 水合氧化铁改性竹炭去除水中磺胺甲噁唑[J]. 环境工程学报, 2016, 10(2): 559-565. doi: 10.12030/j.cjee.20160208
引用本文: 陈国鑫, 王珅, 熊永娇, 宁寻安, 黄翔峰, 刘佳. 水合氧化铁改性竹炭去除水中磺胺甲噁唑[J]. 环境工程学报, 2016, 10(2): 559-565. doi: 10.12030/j.cjee.20160208
Chen Guoxin, Wang Shen, Xiong Yongjiao, Ning Xunan, Huang Xiangfeng, Liu Jia. Sulfamethoxazole removal from aqueous solution by hydrous ferric oxide modified bamboo charcoal[J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 559-565. doi: 10.12030/j.cjee.20160208
Citation: Chen Guoxin, Wang Shen, Xiong Yongjiao, Ning Xunan, Huang Xiangfeng, Liu Jia. Sulfamethoxazole removal from aqueous solution by hydrous ferric oxide modified bamboo charcoal[J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 559-565. doi: 10.12030/j.cjee.20160208

水合氧化铁改性竹炭去除水中磺胺甲噁唑

  • 1. 广东工业大学环境科学与工程学院, 广州 510006
  • 2. 同济大学环境科学与工程学院, 污染控制与资源化研究国家重点实验室, 上海 200092
基金项目:

国家"水体污染控制与治理"科技重大专项(2012ZX07101006-02)

摘要: 研究了水合氧化铁(HFO)改性竹炭对水中磺胺甲噁唑的去除效果,考察了磺胺甲噁唑初始浓度与初始pH对去除效果的影响,并对去除过程中磺胺甲噁唑及其产物的发光细菌的急性毒性进行了评价。实验结果表明,采用X射线光电子能谱(XPS)及红外光谱(FTIR)对改性竹炭进行表征确定水合氧化铁负载改性的方法是可行的,改性竹炭能显著提高竹炭对水中磺胺甲噁唑的去除效果,在磺胺甲噁唑20、40和80 mg/L 3个初始浓度条件下,在HFO改性竹炭反应体系中,其反应速率常数为原竹炭的19.0~32.2倍;改性竹炭对水中磺胺甲噁唑的去除过程符合准一级动力学,反应速率常数随初始浓度的升高而减小,反应速率常数随pH的变化规律为pH 8>pH 4>pH 1,表明水中磺胺甲噁唑以阴离子形态存在时更易于去除;改性竹炭去除磺胺甲噁唑的过程中有反应产物生成,发光细菌毒性测定结果表明,反应体系的发光抑制率从反应起始时的96.1%下降到了84.2%(144 h),说明采用HFO改性竹炭去除磺胺甲噁唑有利于减弱反应体系的毒性。

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回