乳液电纺纤维膜固定化漆酶及其对水中酚类污染物的降解

袁钰, 代云容, 宋永会, 于彩虹. 乳液电纺纤维膜固定化漆酶及其对水中酚类污染物的降解[J]. 环境工程学报, 2016, 10(1): 88-94. doi: 10.12030/j.cjee.20160114
引用本文: 袁钰, 代云容, 宋永会, 于彩虹. 乳液电纺纤维膜固定化漆酶及其对水中酚类污染物的降解[J]. 环境工程学报, 2016, 10(1): 88-94. doi: 10.12030/j.cjee.20160114
Yuan Yu, Dai Yunrong, Song Yonghui, Yu Caihong. Immobilization of laccase in electrospun fibrous membranes by emulsion electrospinning and its degradation of phenolic pollutants in water[J]. Chinese Journal of Environmental Engineering, 2016, 10(1): 88-94. doi: 10.12030/j.cjee.20160114
Citation: Yuan Yu, Dai Yunrong, Song Yonghui, Yu Caihong. Immobilization of laccase in electrospun fibrous membranes by emulsion electrospinning and its degradation of phenolic pollutants in water[J]. Chinese Journal of Environmental Engineering, 2016, 10(1): 88-94. doi: 10.12030/j.cjee.20160114

乳液电纺纤维膜固定化漆酶及其对水中酚类污染物的降解

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2012ZX07202-005)

    国家自然科学基金资助项目(21407138)

    中国博士后科学基金资助项目(2014M550083)

  • 中图分类号: X703

Immobilization of laccase in electrospun fibrous membranes by emulsion electrospinning and its degradation of phenolic pollutants in water

  • Fund Project:
  • 摘要: 为了提高漆酶在水体有机污染物控制中的实用性,以乳液电纺作为酶固定化方法,以电纺纤维膜作为载体制备固定化漆酶,考察并优化了纺丝电压、乳化剂和酶溶液添加量等因素对载漆酶电纺纤维膜形貌和酶学性能的影响。结果表明,在纺丝电压为12 kV、乳化剂F108添加量为10 wt%(相对于聚合物质量),漆酶溶液添加量为0.5 mL的最优条件下,所得电纺纤维膜固定化漆酶能保持78.6%的活性,且纤维呈壳-核结构,漆酶可以被成功包埋固定在电纺纤维的核部分,使漆酶具有良好的储存和操作稳定性。将固定化漆酶用于净化水中典型酚类污染物,结果表明,其对水中2,4-二氯酚、双酚A和三氯生的去除效率均高于75%;且得益于纤维膜对水中三氯生的强吸附作用,固定化漆酶对三氯生的降解率达到83.2%,甚至高于游离漆酶(74.3%)。乳液电纺纤维膜固定化漆酶在水中酚类污染物净化方面表现出良好的应用前景。
  • 加载中
  • [1] Yan Jinping,Chen Daidi,Yang En,et al.Purification and characterization of a thermotolerant laccase isoform in Trametes trogii strain and its potential in dye decolorization.International Biodeterioration & Biodegradation,2014,93:186-194
    [2] Asadgol Z.,Forootanfar H.,Rezaei S.,et al.Removal of phenol and bisphenol-a catalyzed by laccase in aqueous solution.Journal of Environmental Health Science & Engineering,2014,12:93
    [3] 贺芙蓉,王颖,陈晓春,等.表面铜螯合磁性二氧化硅固定化漆酶及其催化降解水中2,4-二氯酚.环境工程学报,2011,5(12):2651-2657 He Furong,Wang Ying,Chen Xiaochun,et al.Immobilization of laccase on Cu(Ⅱ) chelating magnetic silica and its catalytic degradation of 2,4-dichlorophenol.Chinese Journal of Environmental Engineering,2011,5(12):2651-2657(in Chinese)
    [4] Telke A.A.,Kalyani D.C.,Jadhav U.U.,et al.Purification and characterization of an extracellular laccase from a Pseudomonas sp.LBC1 and its application for the removal of bisphenol A.Journal of Molecular Catalysis B:Enzymatic,2009,61(3-4):252-260
    [5] Hou Jingwei,Dong Guangxi,Ye Yun,et al.Laccase immobilization on titania nanoparticles and titania-functionalized membranes.Journal of Membrane Science,2014,452:229-240
    [6] Hanefeld U.,Gardossi L.,Magner E.Understanding enzyme immobilisation.Chemical Society Reviews,2009,38(2):453-468
    [7] Brady D.,Jordaan J.Advances in enzyme immobilisation.Biotechnology Letters,2009,31(11):1639-1650
    [8] Greiner A.,Wendorff J.H.Electrospinning:A fascinating method for the preparation of ultrathin fibers.Angewandte Chemie International Edition,2007,46(30):5670-5703
    [9] 代云容,牛军峰,殷立峰,等.静电纺丝纳米纤维膜固定化酶及其应用.化学进展, 2010,22(9):1808-1818 Dai Yunrong,Niu Junfeng,Yin Lifeng,et al.Electrospun nanofiber membranes as supports for enzyme immobilization and its application.Progress in Chemistry,2010,22(9):1808-1818(in Chinese)
    [10] Wang Yuhong,Hsieh Y.L.Enzyme immobilization to ultra-fine cellulose fibers via amphiphilic polyethylene glycol spacers.Journal of Polymer Science Part A:Polymer Chemistry,2004,42(17):4289-4299
    [11] Wang Zhengang,Wan Lingshu,Liu Zhenmei,et al.Enzyme immobilization on electrospun polymer nanofibers:An overview.Journal of Polymer Science Part A:Polymer Chemistry,2009,56(4):189-195
    [12] Li Yan,Quan Jing,Branford-White C.,et al.Electrospun polyacrylonitrile-glycopolymer nanofibrous membranes for enzyme immobilization.Journal of Molecular Catalysis B:Enzymatic,2012,76:15-22
    [13] Zhang Y.Z.,Wang X.,Feng Y.,et al.Coaxial electrospinning of(Fluorescein lsothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release.Biomacromolecules,2006,7(4):1049-1057
    [14] Jiang Hongliang,Wang Liqun,Zhu Kangjie.Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents.Journal of Controlled Release,2014,193:296-303
    [15] Yang Ye,Li Xiaohong,Qi Mingbo,et al.Release pattern and structural integrity of lysozyme encapsulated in core-sheath structured poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning.European Journal of Pharmaceutics and Biopharmaceutics,2008,69(1):106-116
    [16] Dai Yunrong,Niu Junfeng,Liu Jia,et al.In situ encapsulation of laccase in microfibers by emulsion electrospinning:Preparation,characterization,and application.Bioresource Technology,2010,101(23):8942-8947
    [17] Li Xiaoqiang,Su Yan,Liu Shuiping,et al.Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning.Colloids and Surfaces B:Biointerfaces,2010,75(2):418-424
    [18] Bradford M.M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical Biochemistry,1976,72(1-2):248-254
    [19] Johannes C.,Majcherczyk A.Laccase activity tests and laccase inhibitors.Journal of Biotechnology,2000,78(2):193-199
    [20] Wu Lili,Yuan Xiaoyan,Sheng Jing.Immobilization of cellulase in nanofibrous PVA membranes by electrospinning.Journal of Membrane Science,2005,250(1-2):167-173
    [21] Huang Zhengming,Zhang Yanzhong,Kotaki M.,et al.A review on polymer nanofibers by electrospinning and their applications in nanocomposites.Composites Science and Technology,2003,63(15):2223-2253
    [22] Yang Ye,Li Xiaohong,Cui Wenguo,et al.Structural stability and release profiles of proteins from core-shell poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning.Journal of Biomedical Materials Research Part A,2008,86A(2):374-385
    [23] Niu Junfeng,Dai Yunrong,Guo Huiyuan,et al.Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor.Journal of Hazardous Materials,2013,248-249:254-260
  • 加载中
计量
  • 文章访问数:  1772
  • HTML全文浏览数:  1173
  • PDF下载数:  1241
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-10-24
  • 刊出日期:  2016-01-25

乳液电纺纤维膜固定化漆酶及其对水中酚类污染物的降解

  • 1.  中国矿业大学(北京)化学与环境工程学院, 北京 100083
  • 2.  环境基准与风险评估国家重点实验室中国环境科学研究院, 北京 100012
  • 3.  中国环境科学研究院城市水环境科技创新基地, 北京 100012
基金项目:

国家"水体污染控制与治理"科技重大专项(2012ZX07202-005)

国家自然科学基金资助项目(21407138)

中国博士后科学基金资助项目(2014M550083)

摘要: 为了提高漆酶在水体有机污染物控制中的实用性,以乳液电纺作为酶固定化方法,以电纺纤维膜作为载体制备固定化漆酶,考察并优化了纺丝电压、乳化剂和酶溶液添加量等因素对载漆酶电纺纤维膜形貌和酶学性能的影响。结果表明,在纺丝电压为12 kV、乳化剂F108添加量为10 wt%(相对于聚合物质量),漆酶溶液添加量为0.5 mL的最优条件下,所得电纺纤维膜固定化漆酶能保持78.6%的活性,且纤维呈壳-核结构,漆酶可以被成功包埋固定在电纺纤维的核部分,使漆酶具有良好的储存和操作稳定性。将固定化漆酶用于净化水中典型酚类污染物,结果表明,其对水中2,4-二氯酚、双酚A和三氯生的去除效率均高于75%;且得益于纤维膜对水中三氯生的强吸附作用,固定化漆酶对三氯生的降解率达到83.2%,甚至高于游离漆酶(74.3%)。乳液电纺纤维膜固定化漆酶在水中酚类污染物净化方面表现出良好的应用前景。

English Abstract

参考文献 (23)

目录

/

返回文章
返回