耦合微滤膜的正渗透膜生物反应器的构建及其运行性能

赵艳晓, 王新华, 李秀芬. 耦合微滤膜的正渗透膜生物反应器的构建及其运行性能[J]. 环境工程学报, 2017, 11(4): 1981-1986. doi: 10.12030/j.cjee.201601071
引用本文: 赵艳晓, 王新华, 李秀芬. 耦合微滤膜的正渗透膜生物反应器的构建及其运行性能[J]. 环境工程学报, 2017, 11(4): 1981-1986. doi: 10.12030/j.cjee.201601071
ZHAO Yanxiao, WANG Xinhua, LI Xiufen. Performance of a novel osmotic membrane bioreactor integrating with microfiltration membrane for municipal wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 1981-1986. doi: 10.12030/j.cjee.201601071
Citation: ZHAO Yanxiao, WANG Xinhua, LI Xiufen. Performance of a novel osmotic membrane bioreactor integrating with microfiltration membrane for municipal wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 1981-1986. doi: 10.12030/j.cjee.201601071

耦合微滤膜的正渗透膜生物反应器的构建及其运行性能

  • 基金项目:

    国家自然科学基金资助项目(21107035)

  • 中图分类号: X703

Performance of a novel osmotic membrane bioreactor integrating with microfiltration membrane for municipal wastewater treatment

  • Fund Project:
  • 摘要: 针对目前正渗透膜生物反应器(OMBR)存在的盐度积累问题,借助微滤(MF)膜允许溶解性盐透过的特性,开发了基于MF和正渗透(FO)技术的新型膜生物反应器(MFO-MBR)。实验以MFO-MBR为依托,选取性能优良的聚酰胺(TFC)材质的FO膜,考察工艺处理模拟生活污水过程中的运行性能。结果表明,由于MF的引入,MFO-MBR的盐度被控制在1.7 mS·cm-1左右。正是由于MFO-MBR中的低盐度环境,FO膜的通量得到了提升,最终稳定在6.5 LMH左右。虽然MF的出水劣于FO膜的出水,但是可以直接用作城市杂用水,而FO膜出水中TOC和NH4+-N的去除率分别高达96%和98%。TFC污染膜面含有总细胞、蛋白质、ɑ-D-吡喃多糖及β-D-吡喃多糖等有机和生物污染物,且以微生物和蛋白质为主。盐度积累导致的渗透压差的减小是常规OMBR通量衰减的主要原因,而膜污染尤其外部污染则是MFO-MBR通量衰减的主因。
  • 加载中
  • [1] CORNELISSEN E R, HARMSEN D, DE KORTE K F, et al. Membrane fouling and process performance of forward osmosis membranes on activated sludge[J]. Journal of Membrane Science, 2008, 319(1/2): 158-168
    [2] ACHILLI A, CATH T Y, MARCHAND E A, et al. The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes[J]. Desalination, 2009, 239(1/2/3): 10-21
    [3] YAP W J, ZHANG Jinsong, LAY W C L, et al. State of the art of osmotic membrane bioreactors for water reclamation[J]. Bioresource Technology, 2012, 122: 217-222
    [4] WANG Xinhua, CHANG V W C, TANG C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: Advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504: 113-132
    [5] XIAO Dezhong, TANG C Y, ZHANG Jinsong, et al. Modeling salt accumulation in osmotic membrane bioreactors: Implications for FO membrane selection and system operation[J]. Journal of Membrane Science, 2011, 366(1/2): 314-324
    [6] WANG Xinhua, CHEN Yao, YUAN Bo, et al. Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor[J]. Bioresource Technology, 2014, 161: 340-347
    [7] WANG Xinhua, YUAN Bo, CHEN Yao, et al. Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up[J]. Bioresource Technology, 2014, 167: 116-123
    [8] XIE Ming, NGHIEM L D, PRICE W E, et al. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: Measurements, modelling and implications[J]. Water Research, 2014, 49: 265-274
    [9] TANG C Y, SHE Qianhong, LAY W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science, 2010, 354(1/2): 123-133
    [10] 陈康, 王新华, 李秀芬, 等. 钙离子对短期膜污染的影响[J]. 环境工程学报, 2012, 6(2): 471-476
    [11] 国家环境保护总局. 水和废水监测分析方法.4版[M]. 北京: 中国环境科学出版社, 2002
    [12] CHEN Kang, WANG Xinhua, LI Xiufen, et al. Impacts of sludge retention time on the performance of submerged membrane bioreactor with the addition of calcium ion[J]. Separation and Purification Technology, 2011, 82: 148-155
    [13] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254
    [14] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356
    [15] YUAN Bo, WANG Xinhua, TANG Chuyang, et al. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy[J]. Water Research, 2015, 75: 188-200
    [16] WANG Xinhus, ZHAO Yanxiao, YUAN Bo. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors[J]. Bioresource Technology, 2016, 202: 50-58
    [17] JANGA N, REN Xianghao, KIM G, et al. Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse[J]. Desalination, 2007, 202(1/2/3): 90-98
  • 加载中
计量
  • 文章访问数:  2090
  • HTML全文浏览数:  1694
  • PDF下载数:  423
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-03-03
  • 刊出日期:  2017-04-22
赵艳晓, 王新华, 李秀芬. 耦合微滤膜的正渗透膜生物反应器的构建及其运行性能[J]. 环境工程学报, 2017, 11(4): 1981-1986. doi: 10.12030/j.cjee.201601071
引用本文: 赵艳晓, 王新华, 李秀芬. 耦合微滤膜的正渗透膜生物反应器的构建及其运行性能[J]. 环境工程学报, 2017, 11(4): 1981-1986. doi: 10.12030/j.cjee.201601071
ZHAO Yanxiao, WANG Xinhua, LI Xiufen. Performance of a novel osmotic membrane bioreactor integrating with microfiltration membrane for municipal wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 1981-1986. doi: 10.12030/j.cjee.201601071
Citation: ZHAO Yanxiao, WANG Xinhua, LI Xiufen. Performance of a novel osmotic membrane bioreactor integrating with microfiltration membrane for municipal wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 1981-1986. doi: 10.12030/j.cjee.201601071

耦合微滤膜的正渗透膜生物反应器的构建及其运行性能

  • 1.  江南大学环境与土木工程学院, 无锡 214122
  • 2.  江苏省厌氧生物技术重点实验室, 无锡 214122
  • 3.  江苏省水处理技术与材料协同创新中心, 无锡 214122
基金项目:

国家自然科学基金资助项目(21107035)

摘要: 针对目前正渗透膜生物反应器(OMBR)存在的盐度积累问题,借助微滤(MF)膜允许溶解性盐透过的特性,开发了基于MF和正渗透(FO)技术的新型膜生物反应器(MFO-MBR)。实验以MFO-MBR为依托,选取性能优良的聚酰胺(TFC)材质的FO膜,考察工艺处理模拟生活污水过程中的运行性能。结果表明,由于MF的引入,MFO-MBR的盐度被控制在1.7 mS·cm-1左右。正是由于MFO-MBR中的低盐度环境,FO膜的通量得到了提升,最终稳定在6.5 LMH左右。虽然MF的出水劣于FO膜的出水,但是可以直接用作城市杂用水,而FO膜出水中TOC和NH4+-N的去除率分别高达96%和98%。TFC污染膜面含有总细胞、蛋白质、ɑ-D-吡喃多糖及β-D-吡喃多糖等有机和生物污染物,且以微生物和蛋白质为主。盐度积累导致的渗透压差的减小是常规OMBR通量衰减的主要原因,而膜污染尤其外部污染则是MFO-MBR通量衰减的主因。

English Abstract

参考文献 (17)

返回顶部

目录

/

返回文章
返回