CuxTi(1-x)O2光催化降解硝基苯的性能及最优铜掺杂工艺

王晓伟, 水春雨, 席北斗, 薛强, 沈骏, 洪蔚, 王利, 陶韡. CuxTi(1-x)O2光催化降解硝基苯的性能及最优铜掺杂工艺[J]. 环境工程学报, 2017, 11(4): 2047-2053. doi: 10.12030/j.cjee.201510131
引用本文: 王晓伟, 水春雨, 席北斗, 薛强, 沈骏, 洪蔚, 王利, 陶韡. CuxTi(1-x)O2光催化降解硝基苯的性能及最优铜掺杂工艺[J]. 环境工程学报, 2017, 11(4): 2047-2053. doi: 10.12030/j.cjee.201510131
WANG Xiaowei, SHUI Chunyu, XI Beidou, XUE Qiang, SHEN Jun, HONG Wei, WANG Li, TAO Wei. Performance characterization of photocatalytic degradation of nitrobenzenes by CuxTi(1-x)O2 and optimal Cu doped ratio[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2047-2053. doi: 10.12030/j.cjee.201510131
Citation: WANG Xiaowei, SHUI Chunyu, XI Beidou, XUE Qiang, SHEN Jun, HONG Wei, WANG Li, TAO Wei. Performance characterization of photocatalytic degradation of nitrobenzenes by CuxTi(1-x)O2 and optimal Cu doped ratio[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2047-2053. doi: 10.12030/j.cjee.201510131

CuxTi(1-x)O2光催化降解硝基苯的性能及最优铜掺杂工艺

  • 基金项目:

    中国铁路总公司科技研究开发计划(2015Z004-D)

    国家重点实验室自由探索项目(SKLECRA201506)

Performance characterization of photocatalytic degradation of nitrobenzenes by CuxTi(1-x)O2 and optimal Cu doped ratio

  • Fund Project:
  • 摘要: 为增强TiO2光催化降解硝基苯的性能,采用溶胶-凝胶方法进行TiO2的铜掺杂改性,并通过性能表征与分析确定最优铜掺杂量。XRD、FESEM与Jade分析得出,所制备的1.0%、1.5%、2.0%和2.5% Cu-TiO2在各项指标优于德国P25-TiO2,晶粒尺寸20~50 nm,其中1.5%摩尔比Cu-TiO2的XRD峰值最高和结晶度最好,且团聚现象较弱,且晶粒尺寸小于P25。结合铜掺杂结构、微应力变化以及对硝基苯的降解性能,采用1.5%摩尔比Cu-TiO2光照180 min对硝基苯降解效率最优,是P25-TiO2降解性能的2倍,且遵循拟一级反应动力学。EDS与降解实验联合得出最优降解硝基苯的铜掺杂TiO2式为Cu0.018 3Ti0.981 7O2。模拟含硝基苯废水中C和N元素浓度的变化规律,显示Cu0.018 3Ti0.981 7O2降解硝基苯存在苯环被矿化生成CO2和NO2-键断裂等反应过程。
  • 加载中
  • [1] TAN Lingling, ONG W J, CHAI S P, et al. Visible-light-activated oxygen-rich TiO2 as next generation photocatalyst: Importance of annealing temperature on the photoactivity toward reduction of carbon dioxide[J]. Chemical Engineering Journal, 2016, 283: 1254-1263
    [2] PARK H, PARK Y, KIM W, et al. Surface modification of TiO2 photocatalyst for environmental applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 15: 1-20
    [3] HU Chun, PENG Tianwei, HU Xuexiang, et al. Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation[J]. Journal of the American Chemical Society, 2010, 132(2): 857-862
    [4] QUESADA-CABRERA R, SOTELO-VAZQUEZ C, DARR J A, et al. Critical influence of surface nitrogen species on the activity of N-doped TiO2 thin-films during photodegradation of stearic acid under UV light irradiation[J]. Applied Catalysis B: Environmental, 2014, 160-161: 582-588
    [5] LEE S Y, PARK S J. TiO2 photocatalyst for water treatment applications[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1761-1769
    [6] SAKTHIVEL S, SHANKAR M V, PALANICHAMY M, et al. Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J]. Water Research, 2004, 38: 3001-3008
    [7] ISMAIL A A, BAHNEMANN D W. Synthesis of TiO2/Au nanocomposites via sol-Gel process for photooxidation of methanol[J]. Journal of Advanced Oxidation Technologies, 2009, 12(1): 9-15
    [8] ISMAIL A A, BAHNEMANN D W. Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5784-5791
    [9] YAO Binghua, PENG Chao, ZHANG Wen, et al. A novel Fe(Ⅲ) porphyrin-conjugated TiO2 visible-light photocatalyst[J]. Applied Catalysis B: Environmental, 2015, 174-175: 77-84
    [10] HUANG Shouqiang, LOU Ziyang, QI Zhibin, et al. Enhancing upconversion emissions of Er3+/Tm3+/Yb3+ tridoped (NaY(WO4)2/YF3) through TiO2 coating and Bi3+ doping and its photocatalytic applications[J]. Applied Catalysis B: Environmental, 2015, 168-169: 313-321
    [11] QU Yan, ZHANG Chaojie, LI Fei, et al. Photo-reductive defluorination of perfluorooctanoic acid in water[J]. Water Research, 2010, 44(9): 2939-2947
    [12] MOHAMED H H, BAHNEMANN D W. The role of electron transfer in photocatalysis: Fact and fictions[J]. Applied Catalysis B: Environmental, 2012, 128: 91-104
    [13] JAISWAL R, BHARAMBE J, PATEL N, et al. Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity[J]. Applied Catalysis B: Environmental, 2015, 168-169: 333-341
    [14] SCANLON D O, DUNNILL C W, BUCKERIDGE J, et al. Band alignment of rutile and anatase TiO2[J]. Nature Materials, 2013, 12(9): 798-801
    [15] BLOH J Z, DILLERT R, BAHNEMANN D W. Designing optimal metal-doped photocatalysts: Correlation between photocatalytic activity, doping ratio, and particle size[J]. The Journal of Physical Chemistry C, 2012, 116(48): 25558-25562
    [16] 谢刚, 毛宁, 周林成, 等. 改进碳纳米管/聚氨酯复合材料吸附硝基苯[J]. 环境工程学报, 2015, 9(3): 1117-1123
    [17] 邢军, 孙立波. 低温硝基苯降解菌选育及在土壤修复中的应用[J]. 环境工程学报, 2014, 8(4): 1613-1619
    [18] LUO Dongmei, BI Ye, KAN Wei, et al. Copper and cerium co-doped titanium dioxide on catalytic photo reduction of carbon dioxide with water: Experimental and theoretical studies[J]. Journal of Molecular Structure, 2011, 994(1/2/3): 325-331
    [19] ZHANG Hengzhong, BANFIELD J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2[J]. The Journal of Physical Chemistry B, 2000, 104(15): 3481-3487
    [20] PELAEZ M, NOLAN N T, PILLAI S C, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Applied Catalysis B: Environmental, 2012, 125: 331-349
    [21] CHEN Changlun, LI Xueliang, ZHAO Donglin, et al. Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1/2/3): 449-454
  • 加载中
计量
  • 文章访问数:  1630
  • HTML全文浏览数:  1364
  • PDF下载数:  389
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-23
  • 刊出日期:  2017-04-22
王晓伟, 水春雨, 席北斗, 薛强, 沈骏, 洪蔚, 王利, 陶韡. CuxTi(1-x)O2光催化降解硝基苯的性能及最优铜掺杂工艺[J]. 环境工程学报, 2017, 11(4): 2047-2053. doi: 10.12030/j.cjee.201510131
引用本文: 王晓伟, 水春雨, 席北斗, 薛强, 沈骏, 洪蔚, 王利, 陶韡. CuxTi(1-x)O2光催化降解硝基苯的性能及最优铜掺杂工艺[J]. 环境工程学报, 2017, 11(4): 2047-2053. doi: 10.12030/j.cjee.201510131
WANG Xiaowei, SHUI Chunyu, XI Beidou, XUE Qiang, SHEN Jun, HONG Wei, WANG Li, TAO Wei. Performance characterization of photocatalytic degradation of nitrobenzenes by CuxTi(1-x)O2 and optimal Cu doped ratio[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2047-2053. doi: 10.12030/j.cjee.201510131
Citation: WANG Xiaowei, SHUI Chunyu, XI Beidou, XUE Qiang, SHEN Jun, HONG Wei, WANG Li, TAO Wei. Performance characterization of photocatalytic degradation of nitrobenzenes by CuxTi(1-x)O2 and optimal Cu doped ratio[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2047-2053. doi: 10.12030/j.cjee.201510131

CuxTi(1-x)O2光催化降解硝基苯的性能及最优铜掺杂工艺

  • 1. 中国铁道科学研究院节能环保劳卫研究所, 北京 100081
  • 2. 中国环境科学研究院地下水污染模拟与控制国家环境保护重点实验室, 北京 100012
  • 3. School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth 6009, Australia
基金项目:

中国铁路总公司科技研究开发计划(2015Z004-D)

国家重点实验室自由探索项目(SKLECRA201506)

摘要: 为增强TiO2光催化降解硝基苯的性能,采用溶胶-凝胶方法进行TiO2的铜掺杂改性,并通过性能表征与分析确定最优铜掺杂量。XRD、FESEM与Jade分析得出,所制备的1.0%、1.5%、2.0%和2.5% Cu-TiO2在各项指标优于德国P25-TiO2,晶粒尺寸20~50 nm,其中1.5%摩尔比Cu-TiO2的XRD峰值最高和结晶度最好,且团聚现象较弱,且晶粒尺寸小于P25。结合铜掺杂结构、微应力变化以及对硝基苯的降解性能,采用1.5%摩尔比Cu-TiO2光照180 min对硝基苯降解效率最优,是P25-TiO2降解性能的2倍,且遵循拟一级反应动力学。EDS与降解实验联合得出最优降解硝基苯的铜掺杂TiO2式为Cu0.018 3Ti0.981 7O2。模拟含硝基苯废水中C和N元素浓度的变化规律,显示Cu0.018 3Ti0.981 7O2降解硝基苯存在苯环被矿化生成CO2和NO2-键断裂等反应过程。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回