氨氮对生物净化滤柱中铁锰氨氮去除效果的影响

程庆锋, 余静, 能子礼超, 张雪乔, 郭俊元, 信欣, 张杰. 氨氮对生物净化滤柱中铁锰氨氮去除效果的影响[J]. 环境工程学报, 2016, 10(11): 6371-6377. doi: 10.12030/j.cjee.201510114
引用本文: 程庆锋, 余静, 能子礼超, 张雪乔, 郭俊元, 信欣, 张杰. 氨氮对生物净化滤柱中铁锰氨氮去除效果的影响[J]. 环境工程学报, 2016, 10(11): 6371-6377. doi: 10.12030/j.cjee.201510114
CHENG Qingfeng, YU Jing, NENGZI Lichao, ZHANG Xueqiao, GUO Junyuan, XIN Xin, ZHANG Jie. Effects of ammonia on efficiency of iron, manganese and ammonia removal in biological purifying filter[J]. Chinese Journal of Environmental Engineering, 2016, 10(11): 6371-6377. doi: 10.12030/j.cjee.201510114
Citation: CHENG Qingfeng, YU Jing, NENGZI Lichao, ZHANG Xueqiao, GUO Junyuan, XIN Xin, ZHANG Jie. Effects of ammonia on efficiency of iron, manganese and ammonia removal in biological purifying filter[J]. Chinese Journal of Environmental Engineering, 2016, 10(11): 6371-6377. doi: 10.12030/j.cjee.201510114

氨氮对生物净化滤柱中铁锰氨氮去除效果的影响

  • 基金项目:

    成都信息工程大学科研基金资助项目(KYTZ201511,CRF201607)

Effects of ammonia on efficiency of iron, manganese and ammonia removal in biological purifying filter

  • Fund Project:
  • 摘要: 采用培养成熟并稳定运行一段时间的生物除铁除锰除氨氮滤柱,考察进水氨氮浓度变化对铁锰氨氮去除效果的影响。结果表明:进水氨氮从约1.2 mg·L-1逐步提高到约2.0 mg·L-1的过程中,铁、锰和氨氮的去除效果没有受到影响。当进水氨氮超过2 mg·L-1时,进水溶解氧不足,铁的去除效果不受影响;生物除锰受到氨氮升高过程中产生的亚硝氮的抑制,并且与氨氮竞争溶解氧,导致出水锰升高,然而锰氧化菌能够在低溶解氧条件下将锰氧化,出水锰数天后又降到0.05 mg·L-1以下;出水氨氮随进水氨氮的升高而升高。沿程分析发现,进水溶解氧充足时,氨氮和锰的氧化速率没有受到影响;但进水溶解氧不足时,氨氮和锰的氧化速率明显降低;铁的去除速率不受溶解氧的限制。生物净化滤柱可以在较低的溶解氧条件下运行,从而降低能耗。
  • 加载中
  • [1] 李冬, 张杰, 王洪涛, 等. 除铁除锰生物滤层内铁锰去除的相关关系. 给水排水, 2006, 32(2): 41-44 LI Dong, ZHANG Jie, WANG Hongtao, et al. The relationships between iron and manganese removal in bifilter bed for iron and manganese removal. Water & Wastewater Engineering, 2006, 32(2): 41-44(in Chinese)
    [2] 李冬, 曾辉平, 张杰. 饮用水除铁除锰科学技术进展. 给水排水, 2011, 37(6): 7-13 LI Dong, ZENG Huiping, ZHANG Jie. Reviw of iron and manganese removal technology in drinking water. Water & Wastewater Engineering, 2011, 37(6): 7-13(in Chinese)
    [3] 杨宏, 纪娟, 钟洁, 等. 生物除锰技术研究进展与应用. 环境科学与技术, 2008, 31(8): 38-43 YANG Hong, JI Juan, ZHONG Jie, et al. Investigation and Application of Biological Manganese Removal Technology. Environmental Science & Technology, 2008, 31(8): 38-43(in Chinese)
    [4] 程庆锋, 李冬, 李相昆, 等. 高铁锰氨氮地下水锰极限质量浓度研究. 哈尔滨工业大学学报, 2014, 46(4): 20-24 CHENG Qingfeng, LI Dong, LI Xiangkun, et al. The maximum manganese concentration of groundwater containing high concentration of iron, manganese and nitrogen. Journal of Harbin Institute of Technology, 2014, 46(4): 20-24(in Chinese)
    [5] 张杰, 李冬, 杨宏, 等. 生物固锰除锰机理与工程技术. 北京: 中国建筑工业出版社, 2005: 1-27
    [6] 段晓东, 宋立新, 杨宏, 等. Rhodococcus sp-1的Mn2+生物去除能力及诱导特性. 北京工业大学学报, 2010, 36(2): 245-249 DUAN Xiaodong, SONG Lixin, YANG Hong, et al. Study on the capacity and induction of Rhodococcus sp-1 biological Mn2+ removal. Journal of Beijing University of Technology, 2010, 36(2): 245-249(in Chinese)
    [7] 李冬, 张杰, 陈立学, 等. 生物除铁除锰在地下水处理厂的应用. 中国给水排水, 2004, 20(12): 85-88 LI Dong,ZHANG Jie,CHEN Lixue, et al. Application of biological removal of iron and manganese from groundwater treatment plant. China Water & Wastewater, 2004, 20(12): 85-88(in Chinese)
    [8] 高洁, 刘志雄, 李碧清. 生物除铁除锰水厂的工艺设计与运行效果. 给水排水, 2003, 29(11): 26-28 GAO Jie, LIU Zhixiong, LI Biqing. Technical design and performance of waterworks for iron and manganese removal by microorganism. Water & Wastewater Engineering, 2003, 29(11): 26-28(in Chinese)
    [9] 李冬, 杨宏, 张杰. 首座大型生物除铁除锰水厂的实践. 中国工程科学, 2003, 5(7): 53-57 LI Dong, YANG Hong, ZHANG Jie. Realization of the first water plant with biological removal of iron and manganese. Engineering Science, 2003, 5(7): 53-57(in Chinese)
    [10] 曾辉平. 含高浓度铁锰及氨氮的地下水生物净化效能与工程应用研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2010 ZENG Huiping. Biological purification of iron, manganese and ammonia with high concentration in grounwater and engineering application. Harbin: Doctor Dissertation of Harbin Institute of Technology, 2010(in Chinese)
    [11] 李冬, 杨昊, 李相昆, 等. 无烟煤滤料在生物除铁除锰水厂中的应用. 沈阳建筑大学学报(自然科学版), 2007, 23(5): 818-821 LI Dong, YANG Hao, LI Xiangkun, et al. The application of anthracite in water plant for biological removal of iron and manganese. Journal of Shenyang Jianzhu University (Natural Science), 2007, 23(5): 818-821(in Chinese)
    [12] HASAN H. A., ABDULLAH S. R. S., KAMARUDIN S. K., et al. On-off control of aeration time in the simultaneous removal of ammonia and manganese using a biological aerated filter system. Process Safety and Environmental Protection, 2013, 91(5): 415-422
    [13] CHARROIS J. W. A., HRUDEY S. E. Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations. Water Research, 2007, 41(3): 674-682
    [14] RICHARDSON S. D., POSTIGO C. Drinking water disinfection by-products. The handbook of environmental chemistry emerging organic contaminants and human health, vol.20//BARCELó D. Emerging Organic Contaminants and Human Health. Berlin Heidelberg: Springer, 2012, 93-137
    [15] WHO. Ammonia in drinking-water//WHO. Guidelines for Drinking-Water Quality (2nd ed). Geneva: World Health Organization, 1996
    [16] NIEUWENHUIJSEN M. J., TOLEDANO M. B., EATON N. E., et al. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: A review. Occupational and Environmental Medicine, 2000, 57(2): 73-85
    [17] RICHARDSON S. D., PLEWA M. J., WAGNER E. D., et al. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutation Research, 2007, 636(1/2/3): 178-242
    [18] MUSTIKA S. A. Potential optimisation of chlorination at Buaran WTP, Jakarta water and environmental engineering. Surrey: Master Dissertation of University of Surrey, 2004
    [19] LI Xiangkun, CHU Zhaorui, LIU Yajun, et al. Molecular characterization of microbial populations in full-scale biofilters treating iron, manganese and ammonia containing groundwater in Harbin, China. Bioresource Technology, 2013, 147: 234-239
    [20] VANDENABEELE J., WOESTYNE M. V., HOUWEN F., et al. Role of autotrophic nitrifiers in biological manganese removal from groundwater containing manganese and ammonium. Microbial Ecology, 1995, 29(1): 83-98
    [21] 程庆锋, 李冬, 李相昆, 等. 高铁锰氨氮地下水生物净化滤池的快速启动. 哈尔滨工业大学学报, 2013, 45(8): 23-27 CHENG Qingfeng, LI Dong, LI Xiangkun, et al. Rapid start-up of biological purifying filter of groundwater containing high concentration of iron and manganese associated ammonia nitrogen. Journal of Harbin Institute of Technology, 2013, 45(8): 23-27(in Chinese)
    [22] TEKERLEKOPOULOU A. G., VASILIADOU I A., VAYENAS D. V. Physico-chemical and biological iron removal from potable water. Biochemical Engineering Journal, 2006, 31(1): 74-83
    [23] 李冬, 张杰, 王洪涛, 等. 除铁除锰生物滤层内铁的氧化去除机制探讨. 哈尔滨工业大学学报, 2007, 39(8): 1323-1326 LI Dong, ZHANG Jie, WANG Hongtao, et al. Study on the mechanism of Fe2+ oxidation and removal in the biological filter for iron and manganese removal. Journal of Harbin Institute of Technology, 2007, 39(8): 1323-1326(in Chinese)
    [24] 程庆锋, 李冬, 李相昆, 等. 净化高铁锰伴生氨氮地下水的生物滤池快速启动. 中国给水排水, 2013, 29(7): 41-44 CHENG Qingfeng, LI Dong, LI Xiangkun, et al. Rapid start-up of Biofilter Purifying Groundwater Containing High Concentrations of Iron, Manganese and Ammonia Nitrogen. China Water & Wastewater, 2013, 29(7): 41-44(in Chinese)
  • 加载中
计量
  • 文章访问数:  1674
  • HTML全文浏览数:  1481
  • PDF下载数:  350
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-01-20
  • 刊出日期:  2016-11-26
程庆锋, 余静, 能子礼超, 张雪乔, 郭俊元, 信欣, 张杰. 氨氮对生物净化滤柱中铁锰氨氮去除效果的影响[J]. 环境工程学报, 2016, 10(11): 6371-6377. doi: 10.12030/j.cjee.201510114
引用本文: 程庆锋, 余静, 能子礼超, 张雪乔, 郭俊元, 信欣, 张杰. 氨氮对生物净化滤柱中铁锰氨氮去除效果的影响[J]. 环境工程学报, 2016, 10(11): 6371-6377. doi: 10.12030/j.cjee.201510114
CHENG Qingfeng, YU Jing, NENGZI Lichao, ZHANG Xueqiao, GUO Junyuan, XIN Xin, ZHANG Jie. Effects of ammonia on efficiency of iron, manganese and ammonia removal in biological purifying filter[J]. Chinese Journal of Environmental Engineering, 2016, 10(11): 6371-6377. doi: 10.12030/j.cjee.201510114
Citation: CHENG Qingfeng, YU Jing, NENGZI Lichao, ZHANG Xueqiao, GUO Junyuan, XIN Xin, ZHANG Jie. Effects of ammonia on efficiency of iron, manganese and ammonia removal in biological purifying filter[J]. Chinese Journal of Environmental Engineering, 2016, 10(11): 6371-6377. doi: 10.12030/j.cjee.201510114

氨氮对生物净化滤柱中铁锰氨氮去除效果的影响

  • 1. 成都信息工程大学资源环境学院, 成都 610225
  • 2. 哈尔滨工业大学城市水资源与水环境国家重点实验室, 市政环境工程学院, 哈尔滨 150090
基金项目:

成都信息工程大学科研基金资助项目(KYTZ201511,CRF201607)

摘要: 采用培养成熟并稳定运行一段时间的生物除铁除锰除氨氮滤柱,考察进水氨氮浓度变化对铁锰氨氮去除效果的影响。结果表明:进水氨氮从约1.2 mg·L-1逐步提高到约2.0 mg·L-1的过程中,铁、锰和氨氮的去除效果没有受到影响。当进水氨氮超过2 mg·L-1时,进水溶解氧不足,铁的去除效果不受影响;生物除锰受到氨氮升高过程中产生的亚硝氮的抑制,并且与氨氮竞争溶解氧,导致出水锰升高,然而锰氧化菌能够在低溶解氧条件下将锰氧化,出水锰数天后又降到0.05 mg·L-1以下;出水氨氮随进水氨氮的升高而升高。沿程分析发现,进水溶解氧充足时,氨氮和锰的氧化速率没有受到影响;但进水溶解氧不足时,氨氮和锰的氧化速率明显降低;铁的去除速率不受溶解氧的限制。生物净化滤柱可以在较低的溶解氧条件下运行,从而降低能耗。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回