氨基复合铁氧化物对As(V)的吸附性能与机理

晋银佳, 陈享享, 王丰吉, 朱跃. 氨基复合铁氧化物对As(V)的吸附性能与机理[J]. 环境工程学报, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065
引用本文: 晋银佳, 陈享享, 王丰吉, 朱跃. 氨基复合铁氧化物对As(V)的吸附性能与机理[J]. 环境工程学报, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065
JIN Yinjia, CHEN Xiangxiang, WANG Fengji, ZHU Yue. As(V) adsorption property and mechanism by amino-functionalized iron oxide nanomaterial[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065
Citation: JIN Yinjia, CHEN Xiangxiang, WANG Fengji, ZHU Yue. As(V) adsorption property and mechanism by amino-functionalized iron oxide nanomaterial[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065

氨基复合铁氧化物对As(V)的吸附性能与机理

  • 基金项目:

    国家水体污染控制与治理科技重大专项(2010ZX07212-008)

  • 中图分类号: X703.5

As(V) adsorption property and mechanism by amino-functionalized iron oxide nanomaterial

  • Fund Project:
  • 摘要: 用氯化十六烷基三甲铵(Cetyltrimethylammonium chloride,CTAC)修饰铁氧化物Fe2O3,得到氨基复合的铁氧化物纳米材料(Fe2O3@CTAC)并研究了其对As(V)的吸附去除性能及机理。CTAC修饰不会改变Fe2O3的物理化学结构,而形成的Fe2O3@CTAC不仅可以通过铁氧化物表面络合作用吸附As(V),复合材料表面的氨基也可以通过静电作用吸附As(V)。因而复合材料对As(V)的吸附去除效果显著提升,饱和吸附容量可以达到23.13 mg·g-1。Fe2O3@CTAC 吸附As(V)可以在2 min内达到平衡,符合拟二级动力学模型和two-site Langmuir模型。在pH为3~9的范围内,Fe2O3@CTAC均能有效吸附去除As(V),去除率均能达到90%以上。天然有机质和硫酸根、碳酸氢根、硅酸根对As(V)在Fe2O3@CTAC上的吸附没有明显的抑制作用。磷酸根由于与As(V)存在竞争吸附作用而抑制As(V)的吸附,然而在通常水体磷酸根浓度条件下,Fe2O3@CTAC对As(V)的去除率依然达到90%以上。此外,Fe2O3@CTAC可以再生并重复利用,经过5次循环利用后As(V)的去除率能够保持在85%以上。
  • 加载中
  • [1] NORDSTROM D K. Public health: Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576): 2143-2145
    [2] 金银龙, 梁超轲, 何公理, 等. 中国地方性砷中毒分布调查(总报告)[J]. 卫生研究, 2003, 32(6): 519-540
    [3] YEAN S, CONG L, YAVUZ C T, et al. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate[J]. Journal of Materials Research, 2005, 20(12): 3255-3264
    [4] CHANDRA V, PARK J, CHUN Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal[J]. ACS Nano, 2010, 4(7): 3979-3986
    [5] ZHANG Shujuan, LI Xiaoyan, CHEN J P. Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal[J]. Carbon, 2010, 48(1): 60-67
    [6] 赵艳梅, 高艺玮, 苏雅拉, 等. 介孔γ-Fe2O3的制备及其对氟离子的吸附性能研究[J]. 内蒙古师范大学学报(自然科学汉文版), 2011, 40(6): 600-604
    [7] WHITE B R, STACKHOUSE B T, HOLCOMBE J A. Magnetic γ-Fe2O3 nanoparticles coated with poly-L-cysteine for chelation of As(Ⅲ), Cu(Ⅱ), Cd(Ⅱ), Ni(Ⅱ), Pb(Ⅱ) and Zn(Ⅱ)[J]. Journal of Hazardous Materials, 2009, 161(2/3): 848-853
    [8] SAYIN S, OZCAN F, YILMAZ M, et al. Synthesis of Calix
    [9] arene-grafted magnetite nanoparticles and evaluation of their arsenate as well as dichromate removal efficiency[J]. Clean-Soil, Air, Water, 2010, 38(7): 639-648
    [10] LIU Jingfu, ZHAO Zongshan, JIANG Guibin. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water[J]. Environmental Science & Technology, 2008, 42(18): 6949-6954
    [11] LIM S F, ZHENG Yuming, ZOU Shuaiwen, et al. Uptake of arsenate by an alginate-encapsulated magnetic sorbent: Process performance and characterization of adsorption chemistry[J]. Journal of Colloid and Interface Science, 2009, 333(1): 33-39
    [12] SHU Yurhong, LI Laisheng, ZHANG Qiuyun, et al. Equilibrium, kinetics and thermodynamic studies for sorption of chlorobenzenes on CTMAB modified bentonite and kaolinite[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 47-53
    [13] JIN Yinjia, LIU Fei, TONG Meiping, et al. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2012, 227-228: 461-468
    [14] WANG Peng, LO I M C. Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(Ⅵ) removal from contaminated water[J]. Water Research, 2009, 43(15): 3727-3734
    [15] SHEN Y F, TANG J, NIE Z H, et al. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water[J]. Bioresource Technology, 2009, 100(18): 4139-4146
    [16] GÜCEK A, ŞENER S, BILGEN S, et al. Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions[J]. Journal of Colloid and Interface Science, 2005, 286(1): 53-60
    [17] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403
    [18] DEMIREL G, CAYKARA T, AKAOGLU B, et al. Construction of a novel multilayer system and its use for oriented immobilization of immunoglobulin G[J]. Surface Science, 2007, 601(19): 4563-4570
    [19] SHIPLEY H J, YEAN S, KAN A T, et al. Adsorption of arsenic to magnetite nanoparticles: Effect of particle concentration, pH, ionic strength, and temperature[J]. Environmental Toxicology and Chemistry, 2009, 28(3): 509-515
    [20] ZHAO Shou, FENG Chenghong, HUANG Xiangning, et al. Role of uniform pore structure and high positive charges in the arsenate adsorption performance of Al13-modified montmorillonite[J]. Journal of Hazardous Materials, 2012, 203-204: 317-325
    [21] CHEN Rongzhi, ZHANG Zhenya, LEI Zhongfang, et al. Preparation of iron-impregnated tablet ceramic adsorbent for arsenate removal from aqueous solutions[J]. Desalination, 2012, 286: 56-62
    [22] D'ARCY M, WEISS D, BLUCK M, et al. Adsorption kinetics, capacity and mechanism of arsenate and phosphate on a bifunctional TiO2-Fe2O3 bi-composite[J]. Journal of Colloid and Interface Science, 2011, 364(1): 205-212
    [23] VELIČKOVIĆ Z, VUKOVIĆ G D, MARINKOVIĆ A D, et al. Adsorption of arsenate on iron(Ⅲ) oxide coated ethylenediamine functionalized multiwall carbon nanotubes[J]. Chemical Engineering Journal, 2012, 181-182: 174-181
    [24] CHOWDHURY S R, YANFUL E K. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal[J]. Journal of Environmental Management, 2010, 91(11): 2238-2247
    [25] YUSOF A M, MALEK N A N N. Removal of Cr(Ⅵ) and As(V) from aqueous solutions by HDTMA-modified zeolite Y[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1019-1024
    [26] Olofsson U, Allard B. Complexes of actinides with naturally occurring organic substances- Literature survey[R]. Göteborg, Sweden: Chalmers University of Technology, 1983
    [27] SU Chunming, PULS R W. Arsenate and arsenite removal by zerovalent iron: Effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride[J]. Environmental Science & Technology, 2001, 35(22): 4562-4568
    [28] KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron[J]. Environmental Science & Technology, 2005, 39(5): 1291-1298
    [29] SHEN Chensi, SHEN Yu, WEN Yuezhong, et al. Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(Ⅲ) hydrogel[J]. Water Research, 2011, 45(16): 5200-5210
    [30] SELVAKUMAR R, JOTHI N A, JAYAVIGNESH V, et al. As(V) removal using carbonized yeast cells containing silver nanoparticles[J]. Water Research, 2011, 45(2): 583-592
  • 加载中
计量
  • 文章访问数:  1961
  • HTML全文浏览数:  1208
  • PDF下载数:  247
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-12-01
  • 刊出日期:  2017-04-22
晋银佳, 陈享享, 王丰吉, 朱跃. 氨基复合铁氧化物对As(V)的吸附性能与机理[J]. 环境工程学报, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065
引用本文: 晋银佳, 陈享享, 王丰吉, 朱跃. 氨基复合铁氧化物对As(V)的吸附性能与机理[J]. 环境工程学报, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065
JIN Yinjia, CHEN Xiangxiang, WANG Fengji, ZHU Yue. As(V) adsorption property and mechanism by amino-functionalized iron oxide nanomaterial[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065
Citation: JIN Yinjia, CHEN Xiangxiang, WANG Fengji, ZHU Yue. As(V) adsorption property and mechanism by amino-functionalized iron oxide nanomaterial[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2025-2033. doi: 10.12030/j.cjee.201510065

氨基复合铁氧化物对As(V)的吸附性能与机理

  • 1. 华电电力科学研究院, 环保技术部, 杭州 310030
  • 2. 东北大学资源与土木工程学院, 沈阳 110819
基金项目:

国家水体污染控制与治理科技重大专项(2010ZX07212-008)

摘要: 用氯化十六烷基三甲铵(Cetyltrimethylammonium chloride,CTAC)修饰铁氧化物Fe2O3,得到氨基复合的铁氧化物纳米材料(Fe2O3@CTAC)并研究了其对As(V)的吸附去除性能及机理。CTAC修饰不会改变Fe2O3的物理化学结构,而形成的Fe2O3@CTAC不仅可以通过铁氧化物表面络合作用吸附As(V),复合材料表面的氨基也可以通过静电作用吸附As(V)。因而复合材料对As(V)的吸附去除效果显著提升,饱和吸附容量可以达到23.13 mg·g-1。Fe2O3@CTAC 吸附As(V)可以在2 min内达到平衡,符合拟二级动力学模型和two-site Langmuir模型。在pH为3~9的范围内,Fe2O3@CTAC均能有效吸附去除As(V),去除率均能达到90%以上。天然有机质和硫酸根、碳酸氢根、硅酸根对As(V)在Fe2O3@CTAC上的吸附没有明显的抑制作用。磷酸根由于与As(V)存在竞争吸附作用而抑制As(V)的吸附,然而在通常水体磷酸根浓度条件下,Fe2O3@CTAC对As(V)的去除率依然达到90%以上。此外,Fe2O3@CTAC可以再生并重复利用,经过5次循环利用后As(V)的去除率能够保持在85%以上。

English Abstract

参考文献 (30)

返回顶部

目录

/

返回文章
返回