Cu (Ⅱ)和Cd (Ⅱ)在氧化石墨烯/聚酰胺-胺复合材料上的竞争吸附

刘芳, 贺盛福, 张帆, 张晨. Cu (Ⅱ)和Cd (Ⅱ)在氧化石墨烯/聚酰胺-胺复合材料上的竞争吸附[J]. 环境工程学报, 2017, 11(2): 892-898. doi: 10.12030/j.cjee.201509251
引用本文: 刘芳, 贺盛福, 张帆, 张晨. Cu (Ⅱ)和Cd (Ⅱ)在氧化石墨烯/聚酰胺-胺复合材料上的竞争吸附[J]. 环境工程学报, 2017, 11(2): 892-898. doi: 10.12030/j.cjee.201509251
LIU Fang, HE Shengfu, ZHANG Fan, ZHANG Chen. Competitive adsorption of Cu(Ⅱ) and Cd(Ⅱ) on GO/PAMAMs composites[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 892-898. doi: 10.12030/j.cjee.201509251
Citation: LIU Fang, HE Shengfu, ZHANG Fan, ZHANG Chen. Competitive adsorption of Cu(Ⅱ) and Cd(Ⅱ) on GO/PAMAMs composites[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 892-898. doi: 10.12030/j.cjee.201509251

Cu (Ⅱ)和Cd (Ⅱ)在氧化石墨烯/聚酰胺-胺复合材料上的竞争吸附

  • 基金项目:

    国家自然科学基金资助项目(B061202)

    吉首大学化学化工类专业校外实践基地开放项目(2014jdxm06)

    湖南省教育厅重点项目(15A150)

Competitive adsorption of Cu(Ⅱ) and Cd(Ⅱ) on GO/PAMAMs composites

  • Fund Project:
  • 摘要: 以“grafting to”法制备的氧化石墨烯/聚酰胺-胺(GO/PAMAMs)作为吸附剂,研究了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附行为,考察了溶液pH值、吸附时间、初始离子浓度及吸附剂用量等因素对吸附过程的影响,探讨了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附机理。研究表明:GO/PAMAMs对Cu(Ⅱ)的吸附最佳pH值是5.0,Cd(Ⅱ)的最佳pH值为5.5;Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附过程符合Lagergren准二级动力学模型,等温吸附过程遵循Langmuir模型;热力学研究表明Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的吸附是自发进行的吸热过程,且属于物理吸附。
  • 加载中
  • [1] 李法云, 藏树良, 罗义. 污染土壤生物修复技术研究[J]. 生态学杂志, 2003, 22(1):35-39
    [2] WU Gang, KANG Hubiao, ZHANG Xiaoyang, et al. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:Issues, progress, eco-environmental concerns and opportunities[J]. Journal of Hazardous Materials, 2010, 174(1/2/3):1-8
    [3] 陈善荣, 陈明. 广东省北江韶关段镉污染事件案例分析[J]. 环境教育, 2008(1):49-53
    [4] 谢文平, 王少冰, 朱新平, 等. 珠江下游河段沉积物中重金属含量及污染评价[J]. 环境科学, 2012, 33(6):1808-1815
    [5] 江曙光. 中国水污染现状及防治对策[J]. 水产科技情报, 2010, 37(4):177-181
    [6] YANG Shengtao, CHANG Yanli, WANG Haifang, et al. Folding/aggregation of graphene oxide and its application in Cu2+ removal[J]. Journal of Colloid and Interface Science, 2010, 351(1):122-127
    [7] WANG Hou, YUAN Xingzhong, WU Yan, et al. Adsorption characteristics and behaviors of graphene oxide for Zn(Ⅱ) removal from aqueous solution[J]. Applied Surface Science, 2013, 279:432-440
    [8] HUANG Zhenghong, ZHENG Xiaoyu, LV Wei, et al. Adsorption of lead(Ⅱ) ions from aqueous solution on low-temperature exfoliated graphene nanosheets[J]. Langmuir, 2011, 27(12):7558-7562
    [9] TOMALIA D A, BAKER H, DEWALD J, et al. A new class of polymers:Starburst-dendritic macromolecules[J]. Polymer Journal, 1985, 17(1):117-132
    [10] ZHANG Fan, WANG Bo, HE Shengfu, et al. Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions[J]. Journal of Chemical & Engineering Data, 2014, 59(5):1719-1726
    [11] CHEN Tongbin, WEI Chaoyang, HUANG Zechun, et al. Arsenic hyperaccumulator Pteris vittata L[J]. And its arsenic accumulating. Chinese Science Bulletin, 2002, 47(11):902-905
    [12] 邹卫华, 韩润平, 陈宗璋, 等. 锰氧化物/石英砂(MOCS)对铜和铅离子的动态吸附[J]. 应用化学, 2006, 23(3):299-304
    [13] LAGERGREN S. About the theory of so-called adsorption of soluble substances[J]. Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24(4):1-39
    [14] HO Y S, MCKAY G. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal, 1998, 70(2):115-124
    [15] 刘贤伟. 好氧颗粒污泥的培养及其在工业废水处理中的应用研究[D]. 济南:山东大学, 2007
    [16] 林芳芳. 改性花生壳对水中Cd2+和Pb2+的吸附特性研究[D]. 广州:华南理工大学, 2011
    [17] LI Xiaoli, QI Yongxin, LI Yanfeng, et al. Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb2+ in aqueous solutions by using a batch and continuous systems[J]. Bioresource Technology, 2013, 142:611-619
    [18] ZHAO Guixia, LI Jiaxing, WANG Xiangke. Kinetic and thermodynamic study of 1-naphthol adsorption from aqueous solution to sulfonated graphene nanosheets[J]. Chemical Engineering Journal, 2011, 173(1):185-190
    [19] KARTHIK R, MEENAKSHI S. Removal of Pb(Ⅱ) and Cd(Ⅱ) ions from aqueous solution using polyaniline grafted chitosan[J]. Chemical Engineering Journal, 2015, 263:168-177
  • 加载中
计量
  • 文章访问数:  1713
  • HTML全文浏览数:  1416
  • PDF下载数:  423
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-11-13
  • 刊出日期:  2017-02-18
刘芳, 贺盛福, 张帆, 张晨. Cu (Ⅱ)和Cd (Ⅱ)在氧化石墨烯/聚酰胺-胺复合材料上的竞争吸附[J]. 环境工程学报, 2017, 11(2): 892-898. doi: 10.12030/j.cjee.201509251
引用本文: 刘芳, 贺盛福, 张帆, 张晨. Cu (Ⅱ)和Cd (Ⅱ)在氧化石墨烯/聚酰胺-胺复合材料上的竞争吸附[J]. 环境工程学报, 2017, 11(2): 892-898. doi: 10.12030/j.cjee.201509251
LIU Fang, HE Shengfu, ZHANG Fan, ZHANG Chen. Competitive adsorption of Cu(Ⅱ) and Cd(Ⅱ) on GO/PAMAMs composites[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 892-898. doi: 10.12030/j.cjee.201509251
Citation: LIU Fang, HE Shengfu, ZHANG Fan, ZHANG Chen. Competitive adsorption of Cu(Ⅱ) and Cd(Ⅱ) on GO/PAMAMs composites[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 892-898. doi: 10.12030/j.cjee.201509251

Cu (Ⅱ)和Cd (Ⅱ)在氧化石墨烯/聚酰胺-胺复合材料上的竞争吸附

  • 1.  吉首大学化学化工学院, 吉首 416000
  • 2.  湖南省锰锌钒产业技术2011协同中心, 吉首 416000
基金项目:

国家自然科学基金资助项目(B061202)

吉首大学化学化工类专业校外实践基地开放项目(2014jdxm06)

湖南省教育厅重点项目(15A150)

摘要: 以“grafting to”法制备的氧化石墨烯/聚酰胺-胺(GO/PAMAMs)作为吸附剂,研究了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附行为,考察了溶液pH值、吸附时间、初始离子浓度及吸附剂用量等因素对吸附过程的影响,探讨了Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附机理。研究表明:GO/PAMAMs对Cu(Ⅱ)的吸附最佳pH值是5.0,Cd(Ⅱ)的最佳pH值为5.5;Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的竞争吸附过程符合Lagergren准二级动力学模型,等温吸附过程遵循Langmuir模型;热力学研究表明Cu(Ⅱ)和Cd(Ⅱ)在GO/PAMAMs上的吸附是自发进行的吸热过程,且属于物理吸附。

English Abstract

参考文献 (19)

返回顶部

目录

/

返回文章
返回