放射通道碟管式反渗透(RCDTRO)系统处理垃圾渗滤液

周理, 杨麒, 李志军, 刘阳, 钟宇, 李小明. 放射通道碟管式反渗透(RCDTRO)系统处理垃圾渗滤液[J]. 环境工程学报, 2016, 10(12): 6855-6860. doi: 10.12030/j.cjee.201507199
引用本文: 周理, 杨麒, 李志军, 刘阳, 钟宇, 李小明. 放射通道碟管式反渗透(RCDTRO)系统处理垃圾渗滤液[J]. 环境工程学报, 2016, 10(12): 6855-6860. doi: 10.12030/j.cjee.201507199
ZHOU Li, YANG Qi, LI Zhijun, LIU Yang, ZHONG Yu, LI Xiaoming. RCDTRO system for treatment of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6855-6860. doi: 10.12030/j.cjee.201507199
Citation: ZHOU Li, YANG Qi, LI Zhijun, LIU Yang, ZHONG Yu, LI Xiaoming. RCDTRO system for treatment of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6855-6860. doi: 10.12030/j.cjee.201507199

放射通道碟管式反渗透(RCDTRO)系统处理垃圾渗滤液

  • 基金项目:

    国家自然科学基金资助项目(51378188,51478170,51521006,51508178)

  • 中图分类号: X703.1

RCDTRO system for treatment of landfill leachate

  • Fund Project:
  • 摘要: 研究了碟管式反渗透(RCDTRO)系统处理垃圾渗滤液的性能,通过测定处理效果和对膜污染的抵抗力,对RCDTRO的性能进行了评估。研究表明:在不进行预处理和后置处理的情况下,一级RCDTRO系统对COD的去除率为(98.89±0.26)%、氨氮(NH4+-N)的去除率为(96.04±0.21)%、脱盐率为(97.53±0.18)%;良好的出水质量和对膜污染的强抵抗力(更长的清洗周期)进一步说明了RCDTRO系统处理渗滤液的技术可行性和经济适用性。其次,实验得出最佳的操作条件范围:压力为4.2~5.0 MPa,加压泵的频率为35 Hz,回收率为65%~75%。结果表明RCDTRO系统处理渗滤液在技术上和经济上都是可行的,并且能够在相对较低的压力下维持较高的处理效率。
  • 加载中
  • [1] GUO Jinsong, ABBAS A. A., CHEN Youpeng, et al. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. Journal of Hazardous Materials, 2010, 178(1/2/3):699-705
    [2] ZHANG Guoliang, QIN Lei, MENG Qin, et al. Aerobic SMBR/reverse osmosis system enhanced by Fenton oxidation for advanced treatment of old municipal landfill leachate. Bioresource Technology, 2013, 142:261-268
    [3] BAIG S., COULOMB I., COURANT P., et al. Treatment of landfill leachates:Lapeyrouse and Satrod case studies. Ozone:Science & Engineering:The Journal of the International Ozone Association, 1999, 21(1):1-22
    [4] RENOU S., GIVAUDAN J. G., POULAIN S., et al. Landfill leachate treatment:Review and opportunity. Journal of Hazardous Materials, 2008, 150(3):468-493
    [5] GAU S. H., CHANG F. S. Improved Fenton method to remove recalcitrant organics in landfill leachate. Water Science and Technology, 1996, 34(7/8):455-462
    [6] RIVAS F. J., BELTRáN F., CARVALHO F., et al. Study of different integrated physical-chemical+adsorption processes for landfill leachate remediation. Industrial & Engineering Chemistry Research, 2005, 44(8):2871-2878
    [7] KARGI F., PAMUKOGLU M. Y. Adsorbent supplemented biological treatment of pre-treated landfill leachate by fed-batch operation. Bioresource Technology, 2004, 94(3):285-291
    [8] MARAÑÓN E., CASTRILLÓN L., FERNÁNDEZ-NAVA Y., et al. Coagulation-flocculation as a pretreatment process at a landfill leachate nitrification-denitrification plant. Journal of Hazardous Materials, 2008, 156(1/2/3):538-544
    [9] ZHENG Zhong, ZHANG Hua, HE Pinjing, et al. Co-removal of phthalic acid esters with dissolved organic matter from landfill leachate by coagulation and flocculation process. Chemosphere, 2009, 75(2):180-186
    [10] CHIANESE A., RANAURO R., VERDONE N. Treatment of landfill leachate by reverse osmosis. Water Research, 1999, 33(3):647-652
    [11] RUKAPAN W., KHANANTHAI B., CHIEMCHAISRI C., et al. Short- and long-term fouling characteristics of reverse osmosis membrane at full scale leachate treatment plant. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2012, 65(1):127-134
    [12] SCHOEMAN J. J., STRACHAN L. J. Performance of tubular reverse osmosis for the desalination/concentration of a municipal solid waste leachate. Water SA, 2009, 35(3):323-328
    [13] VAN DER BRUGGEN B., VANDECASTEELE C., VAN GESTEL T., et al. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environmental Progress, 2003, 22(1):46-56
    [14] PETERS T. A. High advanced open channel membrane desalination (disc tube module). Desalination, 2001, 134(1/2/3):213-219
    [15] THÖRNEBY L., HOGLAND W., STENIS J., et al. Design of a reverse osmosis plant for leachate treatment aiming for safe disposal. Waste Management & Research, 2003, 21(5):424-435
    [16] RAUTENBACH R., LINN T., EILERS L. Treatment of severely contaminated waste water by a combination of RO, high-pressure RO and NF-potential and limits of the process. Journal of Membrane Science, 2000, 174(2):231-241
    [17] PETERS T. A. Purification of landfill leachate with reverse osmosis and nanofiltration. Desalination, 1998, 119(1/2/3):289-293
    [18] CHAN G. Y. S., CHANG Jie, KURNIAWAN T. A., et al. Removal of non-biodegradable compounds from stabilized leachate using VSEPRO membrane filtration. Desalination, 2007, 202(1/2/3):310-317
    [19] KOSEOGLU-IMER D. Y., KOSE B., ALTINBAS M., et al. The production of polysulfone (PS) membrane with silver nanoparticles (AgNP):Physical properties, filtration performances, and biofouling resistances of membranes. Journal of Membrane Science, 2013, 428:620-628
    [20] 刘研萍, 李秀金. 处理垃圾渗滤液的反渗透膜污染研究. 环境工程学报, 2007, 1(7):101-105 LIU Yanping, LI Xiujin. Study on RO membrane fouling in landfill leachate treatment. Chinese Journal of Environmental Engineering, 2007, 1(7):101-105(in Chinese)
    [21] SIOUTOPOULOS D. C., KARABELAS A. J. Correlation of organic fouling resistances in RO and UF membrane filtration under constant flux and constant pressure. Journal of Membrane Science, 2012, 407-408:34-46
    [22] American Public Health Association, AWWA (American Water Works Association), Water Environment Federation. Standard Methods for the Examination of Water & Wastewater. Washington DC:American Public Health Association, 2005
    [23] JERMANN D., PRONK W., KÄGI R., et al. Influence of interactions between NOM and particles on UF fouling mechanisms. Water Research, 2008, 42(14):3870-3878
    [24] YE Y., LE CLECH P., CHEN V., et al. Fouling mechanisms of alginate solutions as model extracellular polymeric substances. Desalination, 2005, 175(1):7-20
    [25] ALIZADEH TABATABAI S. A., SCHIPPERS J. C., KENNEDY M. D. Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis. Water Research, 2014, 59:283-294
  • 加载中
计量
  • 文章访问数:  1813
  • HTML全文浏览数:  1511
  • PDF下载数:  364
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-08-29
  • 刊出日期:  2016-12-08
周理, 杨麒, 李志军, 刘阳, 钟宇, 李小明. 放射通道碟管式反渗透(RCDTRO)系统处理垃圾渗滤液[J]. 环境工程学报, 2016, 10(12): 6855-6860. doi: 10.12030/j.cjee.201507199
引用本文: 周理, 杨麒, 李志军, 刘阳, 钟宇, 李小明. 放射通道碟管式反渗透(RCDTRO)系统处理垃圾渗滤液[J]. 环境工程学报, 2016, 10(12): 6855-6860. doi: 10.12030/j.cjee.201507199
ZHOU Li, YANG Qi, LI Zhijun, LIU Yang, ZHONG Yu, LI Xiaoming. RCDTRO system for treatment of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6855-6860. doi: 10.12030/j.cjee.201507199
Citation: ZHOU Li, YANG Qi, LI Zhijun, LIU Yang, ZHONG Yu, LI Xiaoming. RCDTRO system for treatment of landfill leachate[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6855-6860. doi: 10.12030/j.cjee.201507199

放射通道碟管式反渗透(RCDTRO)系统处理垃圾渗滤液

  • 1.  湖南大学环境科学与工程学院, 长沙 410082
  • 2.  环境生物与控制教育部重点实验室(湖南大学), 长沙 410082
基金项目:

国家自然科学基金资助项目(51378188,51478170,51521006,51508178)

摘要: 研究了碟管式反渗透(RCDTRO)系统处理垃圾渗滤液的性能,通过测定处理效果和对膜污染的抵抗力,对RCDTRO的性能进行了评估。研究表明:在不进行预处理和后置处理的情况下,一级RCDTRO系统对COD的去除率为(98.89±0.26)%、氨氮(NH4+-N)的去除率为(96.04±0.21)%、脱盐率为(97.53±0.18)%;良好的出水质量和对膜污染的强抵抗力(更长的清洗周期)进一步说明了RCDTRO系统处理渗滤液的技术可行性和经济适用性。其次,实验得出最佳的操作条件范围:压力为4.2~5.0 MPa,加压泵的频率为35 Hz,回收率为65%~75%。结果表明RCDTRO系统处理渗滤液在技术上和经济上都是可行的,并且能够在相对较低的压力下维持较高的处理效率。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回