基于动态气封壁反应器的湿式氧化工艺

殷逢俊, 陈忠, 王光伟, 陈鸿珍, 陈则良, 徐贵华, 徐愿坚. 基于动态气封壁反应器的湿式氧化工艺[J]. 环境工程学报, 2016, 10(12): 6988-6994. doi: 10.12030/j.cjee.201507151
引用本文: 殷逢俊, 陈忠, 王光伟, 陈鸿珍, 陈则良, 徐贵华, 徐愿坚. 基于动态气封壁反应器的湿式氧化工艺[J]. 环境工程学报, 2016, 10(12): 6988-6994. doi: 10.12030/j.cjee.201507151
YIN Fengjun, CHEN Zhong, WANG Guangwei, CHEN Hongzhen, CHEN Zeliang, XU Guihua, XU Yuanjian. Wet air oxidation process based on dynamic gas seal wall reactor[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6988-6994. doi: 10.12030/j.cjee.201507151
Citation: YIN Fengjun, CHEN Zhong, WANG Guangwei, CHEN Hongzhen, CHEN Zeliang, XU Guihua, XU Yuanjian. Wet air oxidation process based on dynamic gas seal wall reactor[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6988-6994. doi: 10.12030/j.cjee.201507151

基于动态气封壁反应器的湿式氧化工艺

  • 基金项目:

    中国科学院"百人计划"项目(Y33Z050M10)

    重庆市基础与前沿研究计划项目(cstc2015jcyjA20010)

    重庆市国土房管科技计划项目(CQGT-KJ-2014040)

  • 中图分类号: X703

Wet air oxidation process based on dynamic gas seal wall reactor

  • Fund Project:
  • 摘要: 将动态气封壁反应器应用于湿式氧化,利用空气与亚临界水的界面张力将腐蚀性反应液局限在多孔壁以内实现“气封”,并在9.1~10.9 MPa、242~338℃的实验条件下得到了验证。对应的湿式氧化工艺在处理固含量2.9%的城市污泥和回收固含量1.6%~10.5%的污泥用活性炭的实验过程中,设备运行稳定,“防腐抗堵”性能良好。进一步分析表明,动态气封壁反应器能强化气液混合、降低设备投入和减少系统能耗,具有一定的开发潜力。但由于受限于反应器体积,过氧量和停留时间不足,导致处理效率偏低,需进一步优化改进。
  • 加载中
  • [1] ZOU L. Y., LI Yuncang, HUNG Y. T. Wet air oxidation for waste treatment//WANG L. K., HUNG Y. T., SHAMMAS N. K. Advanced Physicochemical Treatment Technologies. Berlin:Springer, 2007
    [2] MISHRA V. S., MAHAJANI V. V., JOSHI J. B. Wet air oxidation. Industrial & Engineering Chemistry Research, 1995, 34(1):2-48
    [3] HⅡ K., BAROUTIAN S., PARTHASARATHY R., et al. A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresource Technology, 2014, 155:289-299
    [4] DEBELLEFONTAINE H., FOUSSARD J. N. Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Management, 2000, 20(1):15-25
    [5] BAROUTIAN S., SMIT A. M., ANDREWS J., et al. Hydrothermal degradation of organic matter in municipal sludge using non-catalytic wet oxidation. Chemical Engineering Journal, 2015, 260:846-854
    [6] SLAVIK E., GALESSI R., RAPISARDI A., et al. Wet oxidation as an advanced and sustainable technology for sludge treatment and management:Results from research activities and industrial-scale experiences. Drying Technology:An International Journal, 2015, 33(11):1309-1317
    [7] 陈玲, 赵建夫, 陈岳松. 活性炭湿式氧化再生工艺参数控制与效率试验. 上海环境科学, 2001(11):551-553 CHEN Ling, ZHAO Jianfu, CHEN Yuesong. Regeneration of phenol-spent activated carbon by wet air oxidation-Regeneration parameters control and efficiency. Shanghai Environmental Sciences, 2001(11):551-553(in Chinese)
    [8] KOLACZKOWSKI S. T., PLUCINSKI P., BELTRAN F. J., et al. Wet air oxidation:A review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2):143-160
    [9] HODES M., MARRONE P. A., HONG G. T., et al. Salt precipitation and scale control in supercritical water oxidation:Part A:Fundamentals and research. The Journal of Supercritical Fluids, 2004, 29(3):265-288
    [10] KRITZER P., DINJUS E. An assessment of supercritical water oxidation (SCWO):Existing problems, possible solutions and new reactor concepts. Chemical Engineering Journal, 2001, 83(3):207-214
    [11] MARRONE P. A., HONG G. T. Corrosion control methods in supercritical water oxidation and gasification processes. The Journal of Supercritical Fluids, 2009, 51(2):83-103
    [12] BHARGAVA S. K., TARDIO J., PRASAD J., et al. Wet oxidation and catalytic wet oxidation. Industrial & Engineering Chemistry Research, 2006, 45(4):1221-1258
    [13] YANG Shu, WANG Guangwei, XU Yuanjian. New design of supercritical water oxidation reactor for sewage sludge treatment. Advanced Materials Research, 2013, 774-776:212-215
    [14] CHEN Zhong, WANG Guangwei, MIRZA Z. A., et al. Study of transpiring fluid dynamics in supercritical water oxidation using a transparent reactor. The Journal of Supercritical Fluids, 2014, 88:117-125
    [15] 陈忠, 王光伟, 陈鸿珍, 等. 气封壁高浓度有机污染物超临界水氧化处理系统. 环境工程学报, 2014, 8(9):3825-3831 CHEN Zhong, WANG Guangwei, CHEN Hongzhen, et al. Gas seal supercritical water oxidation system for treatment of concentrated organic wastes. Chinese Journal of Environmental Engineering, 2014, 8(9):3825-3831(in Chinese)
    [16] CHEN Zhong, WANG Guangwei, YIN Fengjun, et al. A new system design for supercritical water oxidation. Chemical Engineering Journal, 2015, 269:343-351
    [17] XU Donghai, WANG Shuzhong, HUANG Chuanbao, et al. Transpiring wall reactor in supercritical water oxidation. Chemical Engineering Research and Design, 2014, 92(11):2626-2639
    [18] YIN Fengjun, XU Yuanjian, WANG Guangwei, et al. Macromolecular products from biosolids and its morphologic change employing hydrothermal treatment. Advanced Materials Research, 2014, 864-867:1976-1980
  • 加载中
计量
  • 文章访问数:  1678
  • HTML全文浏览数:  1271
  • PDF下载数:  339
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-08-17
  • 刊出日期:  2016-12-08
殷逢俊, 陈忠, 王光伟, 陈鸿珍, 陈则良, 徐贵华, 徐愿坚. 基于动态气封壁反应器的湿式氧化工艺[J]. 环境工程学报, 2016, 10(12): 6988-6994. doi: 10.12030/j.cjee.201507151
引用本文: 殷逢俊, 陈忠, 王光伟, 陈鸿珍, 陈则良, 徐贵华, 徐愿坚. 基于动态气封壁反应器的湿式氧化工艺[J]. 环境工程学报, 2016, 10(12): 6988-6994. doi: 10.12030/j.cjee.201507151
YIN Fengjun, CHEN Zhong, WANG Guangwei, CHEN Hongzhen, CHEN Zeliang, XU Guihua, XU Yuanjian. Wet air oxidation process based on dynamic gas seal wall reactor[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6988-6994. doi: 10.12030/j.cjee.201507151
Citation: YIN Fengjun, CHEN Zhong, WANG Guangwei, CHEN Hongzhen, CHEN Zeliang, XU Guihua, XU Yuanjian. Wet air oxidation process based on dynamic gas seal wall reactor[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 6988-6994. doi: 10.12030/j.cjee.201507151

基于动态气封壁反应器的湿式氧化工艺

  • 1.  中国科学院重庆绿色智能技术研究院, 中国科学院水库水环境重点实验室, 重庆 400714
  • 2.  中国科学院大学, 北京 100049
基金项目:

中国科学院"百人计划"项目(Y33Z050M10)

重庆市基础与前沿研究计划项目(cstc2015jcyjA20010)

重庆市国土房管科技计划项目(CQGT-KJ-2014040)

摘要: 将动态气封壁反应器应用于湿式氧化,利用空气与亚临界水的界面张力将腐蚀性反应液局限在多孔壁以内实现“气封”,并在9.1~10.9 MPa、242~338℃的实验条件下得到了验证。对应的湿式氧化工艺在处理固含量2.9%的城市污泥和回收固含量1.6%~10.5%的污泥用活性炭的实验过程中,设备运行稳定,“防腐抗堵”性能良好。进一步分析表明,动态气封壁反应器能强化气液混合、降低设备投入和减少系统能耗,具有一定的开发潜力。但由于受限于反应器体积,过氧量和停留时间不足,导致处理效率偏低,需进一步优化改进。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回