腐植酸强化苯酚厌氧发酵降解

李培良, 王竞, 金若菲, 吕红, 柳广飞, 周集体. 腐植酸强化苯酚厌氧发酵降解[J]. 环境工程学报, 2015, 9(4): 1639-1644. doi: 10.12030/j.cjee.20150419
引用本文: 李培良, 王竞, 金若菲, 吕红, 柳广飞, 周集体. 腐植酸强化苯酚厌氧发酵降解[J]. 环境工程学报, 2015, 9(4): 1639-1644. doi: 10.12030/j.cjee.20150419
Li Peiliang, Wang Jing, Jin Ruofei, Lyv Hong, Liu Guangfei, Zhou Jiti. Intensification of phenol anaerobic biodegradation by humic acids[J]. Chinese Journal of Environmental Engineering, 2015, 9(4): 1639-1644. doi: 10.12030/j.cjee.20150419
Citation: Li Peiliang, Wang Jing, Jin Ruofei, Lyv Hong, Liu Guangfei, Zhou Jiti. Intensification of phenol anaerobic biodegradation by humic acids[J]. Chinese Journal of Environmental Engineering, 2015, 9(4): 1639-1644. doi: 10.12030/j.cjee.20150419

腐植酸强化苯酚厌氧发酵降解

  • 基金项目:

    国家自然科学基金资助项目(51278080)

    国家"水体污染控制与治理"科技重大专项(2012ZX07202-006)

  • 中图分类号: X172

Intensification of phenol anaerobic biodegradation by humic acids

  • Fund Project:
  • 摘要: 在无外加电子受体的条件下,首次研究了腐植酸对活性污泥厌氧降解苯酚的影响。研究结果表明,腐植酸Suwannee River Humic Acid Standard(SR-HA)、Leonardite Humic Acid Standard(L-HA)和Pahokee Peat Humic Acid(PP-HA)作为氧化还原介体能够提高苯酚的厌氧发酵降解效率。其中腐植酸PP-HA对苯酚的厌氧降解表现出了最为明显的强化效果,反应进行36 h后,苯酚去除率提高了18.5%。当单独投加的PP-HA浓度在0至100 mg/L范围内,苯酚的厌氧降解效率随着腐植酸浓度增加而逐渐提高,而浓度大于100 mg/L后,腐植酸对苯酚降解效率的促进作用随着PP-HA浓度的增加逐渐减缓。除此之外,当低浓度的蒽醌-2-磺酸钠(AQS)(0.02 mM)和PP-HA(20 mg/L)在反应体系中共存时,相比于无介体存在的对照组,苯酚厌氧降解效率提高了约1.4倍。产物分析结果表明,乙酸和CH4作为苯酚发酵降解的重要产物被检测出来。最后,在氧化还原介体腐植酸的存在下,初步探讨了苯酚厌氧发酵降解的代谢途径。
  • 加载中
  • [1] van Schie P.M.,Young L.Y.Biodegradation of phenol:Mechanisms and applications.Bioremediation Journal,2000,4(1):1-18
    [2] Busca G.,Berardinelli S.,Resini C.,et al.Technologies for the removal of phenol from fluid streams:A short review of recent developments.Journal of Hazardous Materials,2008,160(2-3):265-288
    [3] Young L.Y.,Rivera M.D.Methanogenic degradation of four phenolic compounds.Water Research,1985,19(10):1325-1332
    [4] Schmeling S.,Narmandakh A.,Schmitt O.,et al.Phenylphosphate synthase:A new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica.Journal of Bacteriology,2004,186(23):8044-8057
    [5] Schleinitz K.M.,Schmeling S.,Jehmlich N.,et al.Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15.Applied and Environmental Microbiology,2009,75(12):3912-3919
    [6] Chin Y.P.,Aiken G.,O'Loughlin E.Molecular weight,polydispersity,and spectroscopic properties of aquatic humic substances.Environmental Science & Technology,1994,28(11):1853-1858
    [7] Kilduff J.E.,Karanfil T.,Chin Y.P.,et al.Adsorption of natural organic polyelectrolytes by activated carbon:A size-exclusion chromatography study.Environmental Science & Technology,1996,30(4):1336-1343
    [8] 高卫国,黄益宗.堆肥和腐殖酸对土壤锌铅赋存形态的影响.环境工程学报,2009,3(3):549-554 Gao Weiguo,Huang Yizong.Effects of humic acid and compost on speciation transformation of zinc and lead in soil.Chinese Journal of Environmental Engineering,2009,3(3):549-554(in Chinese)
    [9] 楼涛,陈国华,谢会祥,等.腐植质与有机污染物作用研究进展.海洋环境科学,2004,23(3):71-76 Lou Tao,Chen Guohua,Xie Huixiang,et al.Advances of the act of humic substance with the organic pollutants.Marine Environmental Science,2004,23(3):71-76(in Chinese)
    [10] Vacca D.J.,Bleam W.F.,Hickey W.J.Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene.Applied and Environmental Microbiology,2005,71(7):3797-3805
    [11] Hahn D.,Cozzolino A.,Piccolo A.,et al.Reduction of 2,4-dichlorophenol toxicity to Pseudomonas putida after oxidative incubation with humic substances and a biomimetic catalyst.Ecotoxicology and Environmental Safety,2007,66(3):335-342
    [12] Van der Zee F.P.,Cervantes F.J.Impact and application of electron shuttles on the redox (bio)transformation of contaminants:A review.Biotechnology Advances,2009,27(3):256-277
    [13] Fava F.,Piccolo A.Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil.Biotechnology and Bioengineering,2002,77(2):204-211
    [14] Martínez C.M.,Celis L.B.,Cervantes F.J.Immobilized humic substances as redox mediator for the simultaneous removal of phenol and Reactive Red 2 in a UASB reactor.Applied Microbiology and Biotechnology,2013,97(22):9897-9905
    [15] Jiang Jie,Kappler A.Kinetics of microbial and chemical reduction of humic substances:Implications for electron shuttling.Environmental Science & Technology,2008,42(10):3563-3569
    [16] Liu R.,Zhou J.L.,Wilding A.Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction-gas chromatography-mass spectrometry.Journal of Chromatography A,2004,1022(1-2):179-189
    [17] Moliner-Martínez Y.,Campíns-Falcó P.,Herráez-Hernández R.Influence of the presence of surfactants and humic acid in waters on the indophenol-type reaction method for ammonium determination.Talanta,2006,69(4):1038-1045
    [18] Wolf M.,Kappler A.,Jiang Jie,et al.Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens.Environmental Science & Technology,2009,43(15):5679-5685
    [19] Rau J.,Knackmuss H.J.,Stolz A.Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria.Environmental Science & Technology,2002,36(7):1497-1504
    [20] Wang Xiujuan,Liu Guangfei,Zhou Jiti,et al.Quinone-mediated reduction of selenite and tellurite by Escherichia coli.Bioresource Technology,2011,102(3):3268-3271
    [21] Cervantes F.J.,Garcia-Espinosa A.,Moreno-Reynosa M.A.,et al.Immobilized redox mediators on anion exchange resins and their role on the reductive decolorization of azo dyes.Environmental Science & Technology,2010,44(5):1747-1753
    [22] Lu Hong,Zhou Jiti,Wang Jing,et al.Enhanced biodecolorization of azo dyes by anthraquinone-2-sulfonate immobilized covalently in polyurethane foam.Bioresource Technology,2010,101(18):7185-7188
    [23] Fang H.H.P.,Liang D.W.,Zhang T.,et al.Anaerobic treatment of phenol in wastewater under thermophilic condition.Water Research,2006,40(3):427-434
    [24] Levén L.,Nyberg K.,Schnürer A.Conversion of phenols during anaerobic digestion of organic solid waste-a review of important microorganisms and impact of temperature.Journal of Environmental Management,2006,95:S99-S103
  • 加载中
计量
  • 文章访问数:  2207
  • HTML全文浏览数:  1605
  • PDF下载数:  843
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-04-11
  • 刊出日期:  2015-04-03
李培良, 王竞, 金若菲, 吕红, 柳广飞, 周集体. 腐植酸强化苯酚厌氧发酵降解[J]. 环境工程学报, 2015, 9(4): 1639-1644. doi: 10.12030/j.cjee.20150419
引用本文: 李培良, 王竞, 金若菲, 吕红, 柳广飞, 周集体. 腐植酸强化苯酚厌氧发酵降解[J]. 环境工程学报, 2015, 9(4): 1639-1644. doi: 10.12030/j.cjee.20150419
Li Peiliang, Wang Jing, Jin Ruofei, Lyv Hong, Liu Guangfei, Zhou Jiti. Intensification of phenol anaerobic biodegradation by humic acids[J]. Chinese Journal of Environmental Engineering, 2015, 9(4): 1639-1644. doi: 10.12030/j.cjee.20150419
Citation: Li Peiliang, Wang Jing, Jin Ruofei, Lyv Hong, Liu Guangfei, Zhou Jiti. Intensification of phenol anaerobic biodegradation by humic acids[J]. Chinese Journal of Environmental Engineering, 2015, 9(4): 1639-1644. doi: 10.12030/j.cjee.20150419

腐植酸强化苯酚厌氧发酵降解

  • 1.  大连理工大学环境学院, 大连 116024
  • 2.  大连理工大学工业生态与环境工程教育部重点实验室, 大连 116024
基金项目:

国家自然科学基金资助项目(51278080)

国家"水体污染控制与治理"科技重大专项(2012ZX07202-006)

摘要: 在无外加电子受体的条件下,首次研究了腐植酸对活性污泥厌氧降解苯酚的影响。研究结果表明,腐植酸Suwannee River Humic Acid Standard(SR-HA)、Leonardite Humic Acid Standard(L-HA)和Pahokee Peat Humic Acid(PP-HA)作为氧化还原介体能够提高苯酚的厌氧发酵降解效率。其中腐植酸PP-HA对苯酚的厌氧降解表现出了最为明显的强化效果,反应进行36 h后,苯酚去除率提高了18.5%。当单独投加的PP-HA浓度在0至100 mg/L范围内,苯酚的厌氧降解效率随着腐植酸浓度增加而逐渐提高,而浓度大于100 mg/L后,腐植酸对苯酚降解效率的促进作用随着PP-HA浓度的增加逐渐减缓。除此之外,当低浓度的蒽醌-2-磺酸钠(AQS)(0.02 mM)和PP-HA(20 mg/L)在反应体系中共存时,相比于无介体存在的对照组,苯酚厌氧降解效率提高了约1.4倍。产物分析结果表明,乙酸和CH4作为苯酚发酵降解的重要产物被检测出来。最后,在氧化还原介体腐植酸的存在下,初步探讨了苯酚厌氧发酵降解的代谢途径。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回