红薯渣和城市污泥混合发酵产酸强化污水脱氮除磷

朱艳芳, 刘宏波, 马惠君, 田悦, 黄帅, 符波, 刘和. 红薯渣和城市污泥混合发酵产酸强化污水脱氮除磷[J]. 环境工程学报, 2015, 9(2): 687-691. doi: 10.12030/j.cjee.20150230
引用本文: 朱艳芳, 刘宏波, 马惠君, 田悦, 黄帅, 符波, 刘和. 红薯渣和城市污泥混合发酵产酸强化污水脱氮除磷[J]. 环境工程学报, 2015, 9(2): 687-691. doi: 10.12030/j.cjee.20150230
Zhu Yanfang, Liu Hongbo, Ma Huijun, Tian Yue, Huang Shuai, Fu Bo, Liu He. Sweet potato residue mixed sludge fermentation producing acid to enhance denitrification and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 687-691. doi: 10.12030/j.cjee.20150230
Citation: Zhu Yanfang, Liu Hongbo, Ma Huijun, Tian Yue, Huang Shuai, Fu Bo, Liu He. Sweet potato residue mixed sludge fermentation producing acid to enhance denitrification and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 687-691. doi: 10.12030/j.cjee.20150230

红薯渣和城市污泥混合发酵产酸强化污水脱氮除磷

  • 基金项目:

    国家自然科学基金资助项目(51208231)

    江苏省自然科学基金资助项目(BK2012121)

    江苏省环保厅资助项目(2012035)

  • 中图分类号: X703

Sweet potato residue mixed sludge fermentation producing acid to enhance denitrification and phosphorus removal

  • Fund Project:
  • 摘要: 投加红薯渣促进城市污泥厌氧发酵产酸量,并将所得有机酸应用到污水处理外加碳源,强化污水脱氮除磷效果。实验结果表明,红薯渣和城市污泥混合发酵产酸比单一污泥发酵效果更好,有机酸产量可提高3倍左右,且做补充碳源时品质好,发酵液中COD:TN:TP约为160:1:1.6。将混合发酵所得有机酸应用到污水脱氮除磷外加碳源,结果表明,混合发酵所得有机酸优于污泥热碱预处理碳源和乙酸钠,污水处理出水中平均COD、TN和TP分别为(32.1±1.45)、(4.8±0.52)和(0.7±0.18)mg/L,TN和TP去除率分别达到(87.2±1.20)%和(90.0±0.18)%。因此,红薯渣的投加,可以大大提高城市污泥发酵产酸效果,优化发酵液碳源的品质。
  • 加载中
  • [1] 杭世珺, 刘旭东, 梁鹏. 污泥处理处置的认识误区与控制对策. 中国给水排水, 2004, 20(12): 89-92
    [2] Hang Shijun, Liu Xudong, Liang Peng. Misunderstanding of sludge disposal and treatment and control strategy. China Water & Wastewater, 2004, 20(12): 89-92(in Chinese)
    [3] Ma Yong, Peng Yongzhen, Wang Shuying, et al. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant. Water Research, 2009, 43(3): 563-572
    [4] Zhu Gubing, Peng Yongzhen, Ma Bin, et al. Optimization of anoxic/oxic step feeding activated sludge process with fuzzy control model for improving nitrogen removal. Chemical Engineering Journal, 2009, 151(1-3): 195-201
    [5] Yuan Hongying, Chen Yinguang, Zhang Huaxing, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environmental Science & Technology, 2006, 40(6): 2025-2029
    [6] Tong Juan, Chen Yinguang. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation. Environmental Science & Technology, 2007, 41(20): 7126-7130
    [7] Zhang Chao, Chen Yinguang. Simultaneous nitrogen and phosphorus recovery from sludge-fermentation liquid mixture and application of the fermentation liquid to enhance municipal wastewater biological nutrient removal. Environmental Science & Technology, 2009, 43(16): 6164-6170
    [8] Zheng Xiong, Tong Juan, Li Hongjing, et al. The investigation of effect of organic carbon sources addition in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactor for nutrients removal from wastewaters. Bioresource Technology, 2009, 100(9): 2515-2520
    [9] Gao Yongqing, Peng Yongzhen, Zhang Jingyu, et al. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Bioresource Technology, 2011, 102(5): 4091-4097
    [10] 刘惠知, 王升平, 周映华, 等. 红薯渣及其利用. 饲料博览, 2013, (7): 41-43
    [11] Liu Huizhi, Wang Shengping, Zhou Yinghua, et al. Sweet potato residue and its use. Feed Review, 2013, (7): 41-43(in Chinese)
    [12] 刘晓玲. 城市污泥厌氧发酵产酸条件优化及其机理研究. 无锡: 江南大学博士学位论文, 2008
    [13] Liu Xiaolin. The condition optimization of sewage sludge for producing volatile fatty acids and the investigation of acidogenic mechanism. Wuxi: Doctor Dissertation of Jiangnan University, 2008(in Chinese)
    [14] Xu Kewei, Liu He, Chen Jian. Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion. Bioresource Technology, 2010, 101(8): 2600-2607
    [15] Wang Jin, Liu He, Fu Bo, et al. Trophic link between syntrophic acetogens and homoacetogens during the anaerobic acidogenic fermentation of sewage sludge. Biochemical Engineering Journal, 2013, 70: 1-8
    [16] 魏复盛. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002
    [17] Lötter L. H., van der Merwe E. H. M. The activities of some fermentation enzymes in activated sludge and their relationship to enhanced phosphorus removal. Water Research, 1987, 21(11): 1307-1310
    [18] Huang J. S., Tsai C. C., Chou H. H., et al. Simulation modeling for nitrogen removal and experimental estimation of mass fractions of microbial groups in single-sludge system. Chemosphere, 2006, 62(1): 61-70
    [19] Kargi F., Konya I. COD, para-chlorophenol and toxicity removal from para-chlorophenol containing synthetic wastewater in an activated sludge unit. Journal of Hazardous Materials, 2006, 132(2-3): 226-231
    [20] Kargi F., Uygur A., Başkaya H. S. Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR. Journal of Environmental Management, 2005, 76(1): 71-75
    [21] Chen Yinguang, Randall A. A., McCue T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Research, 2004, 38(1): 27-36
    [22] Chen Yinguang, Liu Yin, Zhou Qi, et al. Enhanced phosphorus biological removal from wastewater—Effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture. Biochemical Engineering Journal, 2005, 27(1): 24-32
    [23] Ucisik A. S., Henze M. Biological hydrolysis and acidification of sludge under anaerobic conditions: The effect of sludge type and origin on the production and composition of volatile fatty acids. Water Research, 2008, 42(14): 3729-3738
    [24] Li Hongjing, Chen Yinguang, Gu Guowei. The effect of propionic to acetic acid ratio on anaerobic-aerobic (low dissolved oxygen) biological phosphorus and nitrogen removal. Bioresource Technology, 2008, 99(10): 4400-4407
  • 加载中
计量
  • 文章访问数:  2234
  • HTML全文浏览数:  1672
  • PDF下载数:  779
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-03-28
  • 刊出日期:  2015-02-07
朱艳芳, 刘宏波, 马惠君, 田悦, 黄帅, 符波, 刘和. 红薯渣和城市污泥混合发酵产酸强化污水脱氮除磷[J]. 环境工程学报, 2015, 9(2): 687-691. doi: 10.12030/j.cjee.20150230
引用本文: 朱艳芳, 刘宏波, 马惠君, 田悦, 黄帅, 符波, 刘和. 红薯渣和城市污泥混合发酵产酸强化污水脱氮除磷[J]. 环境工程学报, 2015, 9(2): 687-691. doi: 10.12030/j.cjee.20150230
Zhu Yanfang, Liu Hongbo, Ma Huijun, Tian Yue, Huang Shuai, Fu Bo, Liu He. Sweet potato residue mixed sludge fermentation producing acid to enhance denitrification and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 687-691. doi: 10.12030/j.cjee.20150230
Citation: Zhu Yanfang, Liu Hongbo, Ma Huijun, Tian Yue, Huang Shuai, Fu Bo, Liu He. Sweet potato residue mixed sludge fermentation producing acid to enhance denitrification and phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 687-691. doi: 10.12030/j.cjee.20150230

红薯渣和城市污泥混合发酵产酸强化污水脱氮除磷

  • 1. 江南大学环境与土木工程学院, 无锡 214122
基金项目:

国家自然科学基金资助项目(51208231)

江苏省自然科学基金资助项目(BK2012121)

江苏省环保厅资助项目(2012035)

摘要: 投加红薯渣促进城市污泥厌氧发酵产酸量,并将所得有机酸应用到污水处理外加碳源,强化污水脱氮除磷效果。实验结果表明,红薯渣和城市污泥混合发酵产酸比单一污泥发酵效果更好,有机酸产量可提高3倍左右,且做补充碳源时品质好,发酵液中COD:TN:TP约为160:1:1.6。将混合发酵所得有机酸应用到污水脱氮除磷外加碳源,结果表明,混合发酵所得有机酸优于污泥热碱预处理碳源和乙酸钠,污水处理出水中平均COD、TN和TP分别为(32.1±1.45)、(4.8±0.52)和(0.7±0.18)mg/L,TN和TP去除率分别达到(87.2±1.20)%和(90.0±0.18)%。因此,红薯渣的投加,可以大大提高城市污泥发酵产酸效果,优化发酵液碳源的品质。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回