钝顶螺旋藻和小球衣藻富集Cd2+

李彩云, 高鹏程, 同延安, 周旭东, 孔杰. 钝顶螺旋藻和小球衣藻富集Cd2+[J]. 环境工程学报, 2016, 10(6): 2997-3004. doi: 10.12030/j.cjee.201501168
引用本文: 李彩云, 高鹏程, 同延安, 周旭东, 孔杰. 钝顶螺旋藻和小球衣藻富集Cd2+[J]. 环境工程学报, 2016, 10(6): 2997-3004. doi: 10.12030/j.cjee.201501168
Li Caiyun, Gao Pengcheng, Tong Yan'an, Zhou Xudong, Kong Jie. Cd2+ accumulation by Spirulina platensis and Chlamydomonas microsphaera[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2997-3004. doi: 10.12030/j.cjee.201501168
Citation: Li Caiyun, Gao Pengcheng, Tong Yan'an, Zhou Xudong, Kong Jie. Cd2+ accumulation by Spirulina platensis and Chlamydomonas microsphaera[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2997-3004. doi: 10.12030/j.cjee.201501168

钝顶螺旋藻和小球衣藻富集Cd2+

  • 基金项目:

    农业部公益性行业科研专项(201203045)

  • 中图分类号: X522

Cd2+ accumulation by Spirulina platensis and Chlamydomonas microsphaera

  • Fund Project:
  • 摘要: 为了探究我国北方水体中藻类对Cd2+的富集行为,选取常见的蓝藻(钝顶螺旋藻)和绿藻(小球衣藻),模拟天然藻类对Cd2+的吸附和吸收,研究藻液浓度、时间、pH值、温度、共存阳离子类型对富集过程的影响。结果发现:2种藻对Cd2+的富集性能优于活性炭,富集量高出2~17倍左右。藻对Cd2+的富集率随着藻液浓度的增加而升高,而单位富集量则呈现下降趋势;8 h后富集达到饱和;当pH值在3.0~9.0范围内,富集量随着pH值的升高而增加;在室温25℃时富集量最高,低温或高温时富集量都有明显下降;Fe3+对钝顶螺旋藻富集Cd2+几乎没有影响,但对小球衣藻有拮抗作用,Na+、Ca2+对2种藻类富集Cd2+均表现为拮抗作用,且价态越高,拮抗作用越明显。因此,在适宜的环境中,钝顶螺旋藻和小球衣藻对Cd2+具有良好的富集效果。
  • 加载中
  • [1] 刘璐, 闫浩, 夏文彤, 等. 镉对铜绿微囊藻和斜生栅藻的毒性效应. 中国环境科学, 2014, 34(2): 478-484 Liu Lu, Yan Hao, Xia Wentong, et al. Toxic effect of cadmium on Microcysis aeruginosa and Scenedesmus obliquus. China Environmental Science, 2014, 34(2): 478-484(in Chinese)
    [2] 李国新, 李庆召, 薛培英, 等. 黑藻吸附Cd2+和Cu2+的拓展Langmuir模型研究. 农业环境科学学报, 2010, 29(1): 145-151 Li Guoxin, Li Qingzhao, Xue Peiying, et al. Extended langmuir models for Cd2+ and Cu2+ biosorption by Hydrilla verticillata. Journal of Agro-Environment Science, 2010, 29(1): 145-151(in Chinese)
    [3] 田丹, 赵文, 魏杰, 等. 蛋白核小球藻对铅、镉和汞吸附速率及其影响因素的研究. 农业环境科学学报, 2011, 30(12): 2548-2553 Tian Dan, Zhao Wen, Wei Jie, et al. Biosorption rate and influence factors of Pb2+, Cd2+ and Hg2+ by Chlorella pyrenoidosa. Journal of Agro-Environment Science, 2011, 30(12): 2548-2553(in Chinese)
    [4] Rao R. A. K., Kashifuddin M. Kinetics and isotherm studies of Cd(II) adsorption from aqueous solution utilizing seeds of bottlebrush plant (Callistemon chisholmii). Applied Water Science, 2014, 4(4): 371-383
    [5] 汪苹, 胡章立. 衣藻细胞的重金属结合特性及其抗性机制. 环境科学与技术, 2009, 32(1): 84-89 Wang Ping, Hu Zhangli. Mechanism of heavy metal tolerance and binding properties in Chlamydomonas. Environmental Science & Technology, 2009, 32(1): 84-89(in Chinese)
    [6] Leusch A., Holan Z. R., Volesky B. Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforce biomass of marine algae. Journal of Chemical Technology and Biotechnology, 1995, 62(3): 279-288
    [7] Bakkaloglu I., Butter T. J., Evison L. M., et al. Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation and desorption. Water Science and Technology, 1998, 38(6): 269-277
    [8] 周洪英, 王学松, 李娜, 等. 3种大型海藻对含铅废水的生物吸附研究. 环境工程学报, 2010, 4(2): 331-336 Zhou Hongying, Wang Xuesong, Li Na, et al. A study of Pb(II) biosorption by three marine algae. Chinese Journal of Environmental Engineering, 2010, 4(2): 331-336(in Chinese)
    [9] 吴珊, 孙福红, 鄢元波, 等. 太湖蓝藻对Sb(V)的生物吸附作用. 环境科学研究, 2012, 25(7): 764-769 Wu Shan, Sun Fuhong, Yan Yuanbo, et al. Biosorption of Sb(V) by cyanobacteria from Taihu Lake. Research of Environmental Sciences, 2012, 25(7): 764-769(in Chinese)
    [10] 薛培英, 李国新, 赵全利. 轮叶黑藻和穗花狐尾藻对铜的吸收机制研究. 环境科学, 2014, 35(5): 1878-1883 Xue Peiying, Li Guoxin, Zhao Quanli. Mechanisms of copper uptake by submerged plant Hydrilla verticillata (L. f.) royle and Myriophyllum spicatum L. Environmental Science, 2014, 35(5): 1878-1883 (in Chinese)
    [11] 范小杉, 罗宏. 工业废水重金属排放区域及行业分布格局. 中国环境科学, 2013, 33(4): 655-662 Fan Xiaoshan, Luo Hong. Spatial and industrial distribution pattern of heavy metals emission in industrial waste water. China Environmental Science, 2013, 33(4): 655-662(in Chinese)
    [12] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002
    [13] 张福凯, 徐龙君, 张丁月. 脱灰煤基活性炭吸附处理含镉废水. 环境工程学报, 2014, 8(2): 559-562 Zhang Fukai, Xu Longjun, Zhang Dingyue. Cd(II) removal in wastewater with demineralized coal-based activated carbon. Chinese Journal of Environmental Engineering, 2014, 8(2): 559-562(in Chinese)
    [14] 曾淦宁, 周鸿艳, 艾宁, 等. 高比表面积铜藻基活性炭的制备及工艺优化. 环境科学学报, 2013, 33(8): 2209-2217 Zeng Ganning, Zhou Hongyan, Ai Ning, et al. Preparation and optimization of high-performance activated carbons from Sargassum Horneri by chemical activation. Acta Scientiae Circumstantiae, 2013, 33(8): 2209-2217(in Chinese)
    [15] 李山, 杜梅先. 活性炭表面改性及其对Cr(VI)的吸附性能. 环境工程学报, 2012, 6(7): 2367-2372 Li Shan, Du Meixian. Surface modification of activated carbon and its adsorption for Cr(VI). Chinese Journal of Environmental Engineering, 2012, 6(7): 2367-2372(in Chinese)
    [16] 陈丽丹, 王宪, 徐鲁荣, 等. 海藻粉用量对重金属离子吸附率的影响. 厦门大学学报(自然科学版), 2004, 43(2): 229-232 Chen Lidan, Wang Xian, Xu Lurong, et al. Effect of biomass loading on absorbent efficiency of heavy metal ions biosorption. Journal of Xiamen University (Natural Science), 2004, 43(2): 229-232(in Chinese)
    [17] 曾文炉, 赵飞飞, 曹照根, 等. 转小鼠金属硫蛋白-I基因聚球藻7002净化重金属废水的研究. 环境科学, 2008, 29(3): 738-744 Zeng Wenlu, Zhao Feifei, Cao Zhaogen, et al. Decontamination of heavy metals in wastewater by transgenic Synechococcus sp. PCC 7002 with mouse metallothionein-I gene. Environmental Science, 2008, 29(3): 738-744(in Chinese)
    [18] 孙小静, 秦伯强, 朱广伟. 蓝藻死亡分解过程中胶体态磷、氮、有机碳的释放. 中国环境科学, 2007, 27(3): 341-345 Sun Xiaojing, Qin Boqiang, Zhu Guangwei. Release of colloidal phosphorus, nitrogen and organic carbon in the course of dying and decomposing of cyanobacteria. China Environmental Science, 2007, 27(3): 341-345(in Chinese)
    [19] 支田田, 程丽华, 徐新华, 等. 藻类去除水体中重金属的机理及应用. 化学进展, 2011, 23(8): 1782-1794 Zhi Tiantian, Cheng Lihua, Xu Xinhua, et al. Advances on heavy metals removal from aqueous solution by algae. Progress in Chemistry, 2011, 23(8): 1782-1794(in Chinese)
    [20] Chubar N., Carvalho J. R., Correia M. J. N. Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 230(1-3): 57-65
    [21] Gupta V. K., Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. Journal of Hazardous Materials, 2008, 152(1): 407-414
    [22] Sari A., Tuzen M. Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass. Journal of Hazardous Materials, 2009, 171(1-3): 973-979
    [23] Rangsayatorn N., Upatham E. S., Kruatrachue M., et al. Phytoremediation potential of Spirulina (Arthrospira) platensis: Biosorption and toxicity studies of cadmium. Environmental Pollution, 2002, 119(1): 45-53
    [24] 姜晶, 李亮, 李海鹏, 等. 蛋白核小球藻对Pb(II)和Cd(II)的生物吸附及其影响因素. 生态学报, 2012, 32(7): 1995-2003 Jiang Jing, Li Liang, Li Haipeng, et al. Biosorption of lead(II) and cadmium(II) from aqueous solution by Chlorella pyrenoidsa and its influential factors. Acta Ecologica Sinica, 2012, 32(7): 1995-2003(in Chinese)
    [25] Garnham G. W., Codd G. A., Gadd G. M. Accumulation of zirconium by microalgae and cyanobacteria. Applied Microbiology and Biotechnology, 1993, 39(4-5): 666-672
    [26] Schiewer S., Volesky B. Modeling of the proton-metal ion exchange in biosorption. Environmental Science & Technology, 1995, 29(12): 3049-3058
    [27] 王菁, 裘丽萍, 孟顺龙, 等. 温度对普通小球藻和鱼腥藻生长竞争的影响. 水生生物学报, 2014, 38(6): 1127-1134 Wang Jing, Qiu Liping, Meng Shunlong, et al. Effect of temperature on growth and competition of Chlorella Vulgarisris and Anabaena sp. strain PCC. Acta Hydrobiologia Sinica, 2014, 38(6): 1127-1134(in Chinese)
    [28] 潘进芬. 海藻对水体中重金属的吸附研究. 青岛: 中国科学院海洋研究所硕士学位论文, 2000 Pan Jinfen. Study on heavy metals adsorption by marine algae. Qingdao: Master Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2000(in Chinese)
    [29] Cruz C. C. V., Da Costa A. C. A., Henriques C. A., et al. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresource Technology, 2004, 91(3): 249-257
  • 加载中
计量
  • 文章访问数:  2403
  • HTML全文浏览数:  1923
  • PDF下载数:  851
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-04-27
  • 刊出日期:  2016-06-03
李彩云, 高鹏程, 同延安, 周旭东, 孔杰. 钝顶螺旋藻和小球衣藻富集Cd2+[J]. 环境工程学报, 2016, 10(6): 2997-3004. doi: 10.12030/j.cjee.201501168
引用本文: 李彩云, 高鹏程, 同延安, 周旭东, 孔杰. 钝顶螺旋藻和小球衣藻富集Cd2+[J]. 环境工程学报, 2016, 10(6): 2997-3004. doi: 10.12030/j.cjee.201501168
Li Caiyun, Gao Pengcheng, Tong Yan'an, Zhou Xudong, Kong Jie. Cd2+ accumulation by Spirulina platensis and Chlamydomonas microsphaera[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2997-3004. doi: 10.12030/j.cjee.201501168
Citation: Li Caiyun, Gao Pengcheng, Tong Yan'an, Zhou Xudong, Kong Jie. Cd2+ accumulation by Spirulina platensis and Chlamydomonas microsphaera[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2997-3004. doi: 10.12030/j.cjee.201501168

钝顶螺旋藻和小球衣藻富集Cd2+

  • 1. 西北农林科技大学资源环境学院, 杨凌 712100
基金项目:

农业部公益性行业科研专项(201203045)

摘要: 为了探究我国北方水体中藻类对Cd2+的富集行为,选取常见的蓝藻(钝顶螺旋藻)和绿藻(小球衣藻),模拟天然藻类对Cd2+的吸附和吸收,研究藻液浓度、时间、pH值、温度、共存阳离子类型对富集过程的影响。结果发现:2种藻对Cd2+的富集性能优于活性炭,富集量高出2~17倍左右。藻对Cd2+的富集率随着藻液浓度的增加而升高,而单位富集量则呈现下降趋势;8 h后富集达到饱和;当pH值在3.0~9.0范围内,富集量随着pH值的升高而增加;在室温25℃时富集量最高,低温或高温时富集量都有明显下降;Fe3+对钝顶螺旋藻富集Cd2+几乎没有影响,但对小球衣藻有拮抗作用,Na+、Ca2+对2种藻类富集Cd2+均表现为拮抗作用,且价态越高,拮抗作用越明显。因此,在适宜的环境中,钝顶螺旋藻和小球衣藻对Cd2+具有良好的富集效果。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回