正渗透中驱动溶质反渗模型的建立与实验验证

吴晴, 田禹. 正渗透中驱动溶质反渗模型的建立与实验验证[J]. 环境工程学报, 2015, 9(1): 95-101. doi: 10.12030/j.cjee.20150116
引用本文: 吴晴, 田禹. 正渗透中驱动溶质反渗模型的建立与实验验证[J]. 环境工程学报, 2015, 9(1): 95-101. doi: 10.12030/j.cjee.20150116
Wu Qing, Tian Yu. Modeling for reverse permeation process in forwad osmosis and its experimental vertification[J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 95-101. doi: 10.12030/j.cjee.20150116
Citation: Wu Qing, Tian Yu. Modeling for reverse permeation process in forwad osmosis and its experimental vertification[J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 95-101. doi: 10.12030/j.cjee.20150116

正渗透中驱动溶质反渗模型的建立与实验验证

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2013ZX-07201007)

    城市水资源与水环境国家重点实验室项目(2011DX01)

    高等学校博士学科点专项科研基金资助项目(20112302110060)

    国家创新研究群体科学基金资助项目(51121062)

  • 中图分类号: X703

Modeling for reverse permeation process in forwad osmosis and its experimental vertification

  • Fund Project:
  • 摘要: 正渗透过程能够有效运行的一个前提条件是要求驱动溶质反向扩散的通量非常小。为了深入了解正渗透过程中驱动溶质反渗对膜分离过程的影响,以现有的浓差极化模型为基础,建立正渗透过程不同操作模式下驱动溶质的反渗通量以及膜通量的数学模型。为证明模型的准确性,以NaCl为驱动液做一组序批式实验,测出不同初始渗透压下的水通量和反渗通量,将实验值与模型预测值比较,发现模型的预测结果与实验结果高度吻合。
  • 加载中
  • [1] Loeb S.,Titelman L.,Korngold E.,et al.Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane.Journal of Membrane Science,1997,129(2):243-249
    [2] Tang C.Y.,She Qianhong,Lay W.C.L.,et al.Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration.Journal of Membrane Science,2010,354(1-2):123-133
    [3] McCutcheon J.R.,Elimelech M.Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis.Journal of Membrane Science,2006,284(1-2):237-247
    [4] Phillip W.A.,Yong J.S.,Elimelech M.Reverse draw solute permeation in forward osmosis:Modeling and experiments.Environmental Science & Technology,2010,44(13):5170-5176
    [5] Suh C.,Lee S.Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution.Journal of Membrane Science,2013,427:365-374
    [6] Chanukya B.S.,Patil S.,Rastogi N.K.Influence of concentration polarization on flux behavior in forward osmosis during desalination using ammonium bicarbonate.Desalination,2013,312:39-44
    [7] Mulder M.Basic Principles of Membrane Technology (2nd ed.).Dordrecht:Kluwer Academic Publishers,1996:51-52
    [8] Hoek E.M.V.,Kim A.S.,Elimelech M.Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations.Environmental Engineering Science,2002,19(6):357-372
    [9] Tan C.H.,Ng H.Y.Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations.Journal of Membrane Science,2008,324(1-2):209-219
    [10] Achilli A.,Cath T.Y.,Childress A.E.Selection of inorganic-based draw solutions for forward osmosis applications.Journal of Membrane Science,2010,364(1-2):233-241
    [11] You Shijie,Wang Xiuheng,Zhong Ming,et al.Temperature as a factor affecting transmembrane water flux in forward osmosis:steady-state modeling and experimental validation.Chemical Engineering Journal,2012,198-199:52-60
    [12] 王富康,王曙光,李小平.工业废水和城市污水处理技术经济手册.北京:清华大学出版社,1992
    [13] 侯满州,李成容,王英利,等.强电解质溶液粘度的研究.化学通报,2011,74(4):356-361 Hou Manzhou,Li Chengrong,Wang Yingli,et al.Study on the viscosity of strong electrolyte solution.Chemistry,2011,74(4):356-361(in Chinese)
    [14] 付升,于养信,高光华,等.纳滤膜对电解质溶液分离特性的理论研究(I):单一电解质溶液.化学学报,2006,64(22):2241-2246 Fu Sheng,Yu Yangxin,Gao Guanghua,et al.Theoretical investigation on the separation characteristics of electrolyte solutions with the nanofiltration membranes (I):Single electrolyte solutions.Acta Chimica Sinica,2006,64(22):2241-2246(in Chinese)
    [15] Achilli A,Childress A E.Pressure retarded osmosis:From the vision of Sidney Loeb to the first prototype installation—Review.Desalination,2010,261(3):205-211
  • 加载中
计量
  • 文章访问数:  3106
  • HTML全文浏览数:  2414
  • PDF下载数:  859
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-03-05
  • 刊出日期:  2014-12-30
吴晴, 田禹. 正渗透中驱动溶质反渗模型的建立与实验验证[J]. 环境工程学报, 2015, 9(1): 95-101. doi: 10.12030/j.cjee.20150116
引用本文: 吴晴, 田禹. 正渗透中驱动溶质反渗模型的建立与实验验证[J]. 环境工程学报, 2015, 9(1): 95-101. doi: 10.12030/j.cjee.20150116
Wu Qing, Tian Yu. Modeling for reverse permeation process in forwad osmosis and its experimental vertification[J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 95-101. doi: 10.12030/j.cjee.20150116
Citation: Wu Qing, Tian Yu. Modeling for reverse permeation process in forwad osmosis and its experimental vertification[J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 95-101. doi: 10.12030/j.cjee.20150116

正渗透中驱动溶质反渗模型的建立与实验验证

  • 1.  哈尔滨工业大学市政环境工程学院环境科学与工程系, 哈尔滨 150090
  • 2.  城市水资源与水环境国家重点实验室, 哈尔滨 150090
基金项目:

国家"水体污染控制与治理"科技重大专项(2013ZX-07201007)

城市水资源与水环境国家重点实验室项目(2011DX01)

高等学校博士学科点专项科研基金资助项目(20112302110060)

国家创新研究群体科学基金资助项目(51121062)

摘要: 正渗透过程能够有效运行的一个前提条件是要求驱动溶质反向扩散的通量非常小。为了深入了解正渗透过程中驱动溶质反渗对膜分离过程的影响,以现有的浓差极化模型为基础,建立正渗透过程不同操作模式下驱动溶质的反渗通量以及膜通量的数学模型。为证明模型的准确性,以NaCl为驱动液做一组序批式实验,测出不同初始渗透压下的水通量和反渗通量,将实验值与模型预测值比较,发现模型的预测结果与实验结果高度吻合。

English Abstract

参考文献 (15)

返回顶部

目录

/

返回文章
返回