甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水

张雅琳, 胡学伟, 夏丽娟, 靳松望, 王亚冰, 宁平. 甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水[J]. 环境工程学报, 2016, 10(5): 2355-2360. doi: 10.12030/j.cjee.201412120
引用本文: 张雅琳, 胡学伟, 夏丽娟, 靳松望, 王亚冰, 宁平. 甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水[J]. 环境工程学报, 2016, 10(5): 2355-2360. doi: 10.12030/j.cjee.201412120
Zhang Yalin, Hu Xuewei, Xia Lijuan, Jin Songwang, Wang Yabing, Ning Ping. Treating synthetic mine leaching wastewater by sulfate-reducing bacteria with sugarcane bagasse as carbon source[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2355-2360. doi: 10.12030/j.cjee.201412120
Citation: Zhang Yalin, Hu Xuewei, Xia Lijuan, Jin Songwang, Wang Yabing, Ning Ping. Treating synthetic mine leaching wastewater by sulfate-reducing bacteria with sugarcane bagasse as carbon source[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2355-2360. doi: 10.12030/j.cjee.201412120

甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水

  • 基金项目:

    国家自然科学基金资助项目(51178208,51368024)

    云南省教育厅重点项目(2013Z123)

    云南铜业校企预研基金(2013YT02)

  • 中图分类号: X703

Treating synthetic mine leaching wastewater by sulfate-reducing bacteria with sugarcane bagasse as carbon source

  • Fund Project:
  • 摘要: 以甘蔗渣为缓释碳源及载体,负载硫酸盐还原菌(SRB)处理含低浓度Cu2+离子的模拟矿山淋滤水,研究了缓释碳源、pH、ORP、SO42-、COD等对矿山淋滤水中Cu2+去除效果的影响,并探讨了处理过程中铜元素的形态及归趋模式。结果表明:在处理过程中pH呈现缓慢升高趋势,ORP全部降至-100 mV以下;硫酸根还原率可达92.4%;甘蔗渣作为缓释碳源释放稳定,COD可稳定保持200~300 mg/L之间;负载在甘蔗渣载体上的菌群可耐受高浓度Cu2+的毒性抑制,并利用缓释碳源甘蔗渣释放出的小分子物质将硫酸根持续还原;至实验期结束,20 mg/L的Cu2+浓度降至0.5 mg/L以下,较高浓度的Cu2+拟通过多级反应器串联进行逐级去除;SO42-和Cu2+的反应速率比表明,SRB每还原约15 mg SO42-,就有1 mg Cu2+得到去除;Cu2+主要是以硫化物的形式得以去除。
  • 加载中
  • [1] 吴攀, 刘丛强, 杨元根, 等. 矿山环境中(重)金属的释放迁移地球化学及其环境效应. 矿物学报, 2001, 21(2): 213-218 Wu Pan, Liu Congqiang, Yang Yuangen, et al. Release and transport of (heavy) metals and their environmental effect in mining activities. Acta Mineralogica Sinica, 2001, 21(2): 213-218(in Chinese)
    [2] Kolmert Å., Johnson D. B. Remediation of acidic waste waters using immobilised, acidophilic sulfate-reducing bacteria. Journal of Chemical Technology and Biotechnology, 2001, 76(8): 836-843
    [3] 吴义千, 占幼鸿. 矿山酸性废水源头控制与德兴铜矿杨桃坞、祝家废石场和露天采场清污分流工程. 有色金属, 2005, 57(4): 101-109 Wu Yiqian, Zhan Youhong. AMD control from source and water-sewage separation project in Yangtaowu, Zhujia Waste-rock Yards and open-pit of Dexing copper mine. Nonferrous Metals, 2005, 57(4): 101-109(in Chinese)
    [4] 林海. 矿业环境工程. 长沙: 中南大学出版社, 2010
    [5] Neculita C. M., Zagury G. J., Bussière B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: Critical review and research needs. Journal of Environmental Quality, 2007, 36(1): 1-16
    [6] 苏宇, 王进, 彭书传, 等. 以稻草和污泥为碳源硫酸盐还原菌处理酸性矿山排水. 环境科学, 2010, 31(8): 1858-1863 Su Yu, Wang Jin, Peng Shuchuan, et al. Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage. Environmental Science, 2010, 31(8): 1858-1863(in Chinese)
    [7] 张楠, 陈天虎, 周跃飞, 等. 以秸秆为微生物碳源的尾矿原位修复: 动态实验的初步分析. 矿物岩石地球化学通报, 2011, 30(3): 334-340 Zhang Nan, Chen Tianhu, Zhou Yuefei, et al. In-situ bioremediation of tailings with straw as carbon source: Preliminary analysis by dynamic testing. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(3): 334-340(in Chinese)
    [8] 黎少杰, 陈天虎, 周跃飞, 等. Zn(Ⅱ)对生物质碳源处理酸性矿山排水中厌氧微生物活性影响. 环境科学, 2012, 33(1): 293-298 Li Shaojie, Chen Tianhu, Zhou Yuefei, et al. Effect of Zn(Ⅱ) on microbial activity in anaerobic acid mine drainage treatment system with biomass as carbon source. Environmental Science, 2012, 33(1): 293-298(in Chinese)
    [9] Gonalves M. M. M., da Costa A. C. A., Leite S. G. F., et al. Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source. Chemosphere, 2007, 69(11): 1815-1820
    [10] CoCos I. A., Zagury G. J., Clément B., et al. Multiple factor design for reactive mixture selection for use in reactive walls in mine drainage treatment. Water Research, 2002, 36(1): 167-177
    [11] Chang I. S., Shin P. K., Kim B. H. Biological treatment of acid mine drainage under sulfate-reducing conditions with solid waste materials as substrate. Water Research, 2000, 34(4): 1269-1277
    [12] Zagury G. J., Kulnieks V. I., Neculita C. M. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere, 2006, 64(6): 944-954
    [13] 王允圃, 李积华, 刘玉环, 等. 甘蔗渣综合利用技术的最新进展. 中国农学通报, 2010, 26(16): 370-375 Wang Yongpu, Li Jihua, Liu Yuhuan, et al. Comprehensive utilization of bagasse: State of the art. Chinese Agricultural Science Bulletin, 2010, 26(16): 370-375(in Chinese)
    [14] 冯颖, 康勇, 孔琦, 等. 硫酸盐生物还原的温度效应及Fe0的强化作用. 水处理技术, 2005, 31(7): 27-31 Feng Ying, Kang Yong, Kong Qi, et al. Effect of temperature on sulfate biological reduction and enhancement of iron. Technology of Water Treatment, 2005, 31(7): 27-31(in Chinese)
    [15] Tessier A., Campbell P. G. C., Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979, 51(7): 844-851
    [16] 李颖, 关国华. 微生物生理学. 北京: 科学出版社, 2013
    [17] Jong T., Parry D. L. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Research, 2006, 40(13): 2561-2571
    [18] Wu Yun, Zhang Shuzhen, Guo Xueyan, et al. Adsorption of chromium(Ⅲ) on lignin. Bioresource Technology, 2008, 99(16): 7709-7715
    [19] Wei Xing, Fang Linchuan, Cai Peng, et al. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environmental Pollution, 2011, 159(5): 1369-1374
    [20] 肖利萍, 汪兵兵, 魏芳, 等. 新型碳源驯化的SRB去除酸性矿山废水中SO42-最佳反应条件. 环境工程学报, 2014, 8(5): 1705-1710 Xiao Liping, Wang Bingbing, Wei Fang, et al. Optimum reaction conditions for removing sulfate in acid mine drainage by SRB domesticated with new organic carbon sources. Chinese Journal of Environmental Engineering, 2014, 8(5): 1705-1710(in Chinese)
    [21] 赵薇, 康勇, 赵春景. 水处理用纤维素载体的降解及生物膜附着性能. 环境科学学报, 2009, 29(2): 259-266 Zhao Wei, Kang Yong, Zhao Chunjing. Biodegradation and biofilm attachment characteristics of cellulose carriers for water treatment. Acta Scientiae Circumstantiae, 2009, 29(2): 259-266(in Chinese)
    [22] 孔德双, 孔令仁, 史俊, 等. 蜂窝陶瓷载体生物膜技术处理农药废水. 环境工程学报, 2012, 6(4): 1257-1262 Kong Deshuang, Kong Lingren, Shi Jun, et al. Treatment of pesticide wastewater with ceramic honeycomb carrier biofilm technology. Chinese Journal of Environmental Engineering, 2012, 6(4): 1257-1262(in Chinese)
    [23] 胡学伟, 李姝, 荣烨, 等. Cu2+对生物膜及其胞外聚合物的影响. 化工学报, 2014, 65(3): 1062-1067 Hu Xuewei, Li Shu, Rong Ye, et al. Effect of Cu2+ on biofilm and extracellular polymeric substance. CIESC Journal, 2014, 65(3): 1062-1067(in Chinese)
    [24] Hao O. J., Huang Li, Chen J. M., et al. Effects of metal additions on sulfate reduction activity in wastewaters. Toxicological and Environmental Chemistry, 1994, 46(4): 197-212
  • 加载中
计量
  • 文章访问数:  1673
  • HTML全文浏览数:  1392
  • PDF下载数:  267
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-31
  • 刊出日期:  2016-06-03
张雅琳, 胡学伟, 夏丽娟, 靳松望, 王亚冰, 宁平. 甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水[J]. 环境工程学报, 2016, 10(5): 2355-2360. doi: 10.12030/j.cjee.201412120
引用本文: 张雅琳, 胡学伟, 夏丽娟, 靳松望, 王亚冰, 宁平. 甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水[J]. 环境工程学报, 2016, 10(5): 2355-2360. doi: 10.12030/j.cjee.201412120
Zhang Yalin, Hu Xuewei, Xia Lijuan, Jin Songwang, Wang Yabing, Ning Ping. Treating synthetic mine leaching wastewater by sulfate-reducing bacteria with sugarcane bagasse as carbon source[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2355-2360. doi: 10.12030/j.cjee.201412120
Citation: Zhang Yalin, Hu Xuewei, Xia Lijuan, Jin Songwang, Wang Yabing, Ning Ping. Treating synthetic mine leaching wastewater by sulfate-reducing bacteria with sugarcane bagasse as carbon source[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2355-2360. doi: 10.12030/j.cjee.201412120

甘蔗渣为缓释碳源负载SRB处理模拟矿山淋滤水

  • 1. 昆明理工大学环境科学与工程学院, 昆明 650500
基金项目:

国家自然科学基金资助项目(51178208,51368024)

云南省教育厅重点项目(2013Z123)

云南铜业校企预研基金(2013YT02)

摘要: 以甘蔗渣为缓释碳源及载体,负载硫酸盐还原菌(SRB)处理含低浓度Cu2+离子的模拟矿山淋滤水,研究了缓释碳源、pH、ORP、SO42-、COD等对矿山淋滤水中Cu2+去除效果的影响,并探讨了处理过程中铜元素的形态及归趋模式。结果表明:在处理过程中pH呈现缓慢升高趋势,ORP全部降至-100 mV以下;硫酸根还原率可达92.4%;甘蔗渣作为缓释碳源释放稳定,COD可稳定保持200~300 mg/L之间;负载在甘蔗渣载体上的菌群可耐受高浓度Cu2+的毒性抑制,并利用缓释碳源甘蔗渣释放出的小分子物质将硫酸根持续还原;至实验期结束,20 mg/L的Cu2+浓度降至0.5 mg/L以下,较高浓度的Cu2+拟通过多级反应器串联进行逐级去除;SO42-和Cu2+的反应速率比表明,SRB每还原约15 mg SO42-,就有1 mg Cu2+得到去除;Cu2+主要是以硫化物的形式得以去除。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回